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Abstract 

This paper shows that inventors with an early patenting success have a higher inventive productivity 

during their remaining career. We use European patent data for a period of 32 years for 1240 German 

inventors. The patent data are linked with survey data that provide information on an extensive list of 

individual inventor characteristics and time variant information on work environment characteristics 

for the same period. We define an early success as being in the fastest quartile of inventors applying 

for the first patent after completing education or being in the highest quartile of citations received for 

the first patent. The higher career productivity seems to be a consequence of higher individual ability 

rather than cumulative advantage. Inventors with high productivity early in their career cannot 

increase their productivity further but instead experience a regression to the mean. Inventors with a 

fast or high-quality first patent also experience this regression, albeit at a lower rate. In addition, these 

inventors do not obtain better resources, such as a higher share of research and development time, 

larger employers, more voluntary job moves, or more co-inventors, during their remaining career than 

inventors without early success.  
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1 Introduction  
It is hard to observe or predict inventor ability directly (Merton, 1973b; Dasgupta & David, 1994). 

Therefore, individual characteristics formed before the start of the career of an inventor, such as 

education level, family background, or personality traits, are usually used as predictors of future 

inventive productivity (Dietz & Bozeman, 2005; Lawson & Sterzi, 2014). However, potential employers 

cannot easily observe all of these individual characteristics and the predictive value of several 

indicators may be limited for employers. For example, job applicants can manipulate personality tests 

and information about their job motivation during their job interview (Robie et al., 2007). 

Consequently, transparent and trustable achievements obtained before or during the first career years 

may be more reliable indicators to assess individual ability and future productivity for potential 

employers (Lazear, 1986). Identifying, attracting, and retaining young talents especially can be a 

decisive advantage for enterprises that rely on innovations given that few inventors achieve a high 

inventive productivity during their career (Lotka, 1926).  

This paper proposes the time span between education and the first patent as well as the quality of the 

first patent as indicators of inventive career productivity. The image of the young, great mind making 

critical inventions is iconic (Simonton, 1988; Jones, 2010; Jones and Weinberg, 2011). In addition, 

patented inventions are a carefully scrutinized and publicly observable form of creativity (Audia & 

Goncalo, 2007) and a good indicator for inventive activity in those sectors that use patents (Griliches, 

1990). Nevertheless, the informational value of the timing and quality of the first patent on lifetime 

inventions has hardly been assessed.  

In this paper, we establish that inventors whose time between completing their education and the first 

patent application is in the first quartile of all inventors have a patent productivity per work year about 

50% higher during their remaining career compared with other inventors. The inventive career output 

after the first patent is about 20% higher for inventors whose first patent is in the top citations quartile. 

We find a similarly large career productivity difference between inventors with and without early 

patenting successes for the quality (measured by number of citations) of all patents after the first 

patent. We finally show that the speed and quality of the first patent are independent predictors of 

inventive productivity.  

We also explore whether the speed and quality of the first patent are a sign of inventive ability or 

whether the higher lifetime productivity of precocious inventors (Dietz & Bozeman, 2005, p. 354) is a 

consequence of cumulative advantage (DiPrete & Eirich, 2008). Merton (1973a) proposed that early 

patenting success may be an exogenous chance event that has positive long-term effects on inventive 

productivity because it leads to the attribution of additional resources or rewards. Some observers 

argue that the right-skewed distribution of inventive success is the consequence of cumulative 
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advantage processes instead of ability differences between inventors (see, for example, the literature 

review in Allison et al., 1982). However, the distributional shape of inventive success alone is not proof 

of the presence of a cumulative advantage process. A right-skewed patent distribution also may evolve 

when all inventors produce patents with a given production rate and do not obtain resources related 

to previous successes. In other words, there may be a “skewed distribution of talent and tenacity” 

instead of cumulative advantage (Huber, 1998, 2002). 

We find that high productivity during the first career years does not lead to a stronger increase in 

productivity in later career years; the productivity change actually is negative. This regression to the 

mean effect in a random distribution (Stigler, 1997) is lower for precocious inventors. Nevertheless, 

for these inventors, there is no indication of cumulative advantage. We also find no evidence for 

concrete cumulative advantage mechanisms. Precocious inventors do not have a higher share of 

working time devoted to research and development (R&D) activities, nor do they have a higher number 

of co-inventors in later career years compared with the first career years. However, we find a good 

match between the first employer and the precocious inventor. Fewer inventors with early success 

voluntarily move to another employer later in their career. 

We exploit the richness of a dataset that combines survey data for 1240 German academic and industry 

inventors on their career between 1978 and 2010 with their complete patent history drawn from the 

official PATSTAT patent data provided by the European Patent Office. The survey data comprise typical 

curriculum vitae (CV) information and data on family background and personality. A unique calendar 

function in the survey data allows us to observe the work environment and its changes during careers. 

Thus, we can differentiate between the work environment during the first career years and later career 

years and include many potential individual drivers of inventive career success beyond age, gender, 

and education.  

Our paper is structured as follows. Section 2 proposes individual ability and cumulative advantage as 

explanations for the positive correlation between early patenting success and inventive career 

productivity. Section 3 presents our data and the estimation strategy. Section 4 establishes that early 

patenting success is significantly positively correlated with lifetime patenting productivity. Section 5 

shows that cumulative advantage seems not to be a driver of the correlation between early success 

and lifetime productivity. Our results and their potential implications are discussed in Section 6. 

2 Theoretical Framework  

Early Patenting Success as Indicator for Ability  
There is information asymmetry about ingenuity between inventors and other labour market 

participants (Greenwald, 1986). According to Spence (1976), a patent may be a signal for inventive 

ability that reduces the information disadvantage of potential employers (Hoisl, 2007a, Melero et al., 
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2020). First, a patent is easily observable for everybody. For a patent to be issued, the invention must 

be new, useful, and not obvious to persons reasonably skilled in the specific technology. This minimum 

requirement is applied uniformly to all patents, and thus each patent has a minimum information value 

on the inventive ability necessary to obtain it (Griliches, 1990; Huber, 1998). In addition, a substantive 

conceptual contribution by the inventor is a legal requirement for an attribution on a patent and 

violating this requirement may invalidate the patent (Häussler & Sauermann, 2013). Consequently, the 

signalling value can be transferred to all inventors listed on a patent. Second, it is costly and time-

consuming to reach the frontier of knowledge in a field, a necessary component of innovative activity 

(Jones, 2009; 2010). There is also a negative relationship between the human capital investments 

necessary to obtain a patent and the inventor’s ability (Melero et al., 2020). Finally, there is a strong 

incentive to apply for a patent for a suitable inventive idea because a fixed amount of financial income 

from patents is typically shared among all listed inventors (Häussler & Sauermann, 2013).  

Inventive activity is frequently a contest of priority of discovery. Speed in patenting is rewarded 

because usually only the first scientist gets the reputation and rewards for an inventive idea (Merton, 

1973a; Dasgupta & David, 1994). Early patenting success is costlier for less able inventors because it is 

harder for them to speed up the invention. Young inventors in particular need time to acquire the 

necessary background knowledge and cannot spend the time needed for training or education on their 

inventive project (Jones, 2010). Higher innate talent and the mindset required for further inventions 

allow inventors to complete the patenting process faster than their peers (Dietz & Bozeman, 2005). 

Therefore, we assume that: 

Hypothesis A1: Inventors who apply for their first patent faster than their peers have a higher inventive 

performance for the remainder of their career.  

Reputation and economic value of a patent increase with the number of references made to it, typically 

calculated by forward citations in other patents or scientific work (Trajtenberg, 1990; Henderson et al., 

1998; Harhoff et al., 1999; Hall et al., 2005; Sapsalis et al., 2006; Gambardella et al., 2008; Czarnitzki et 

al., 2009; Czarnitzki et al., 2012). In addition to the age of the inventor at the application date, the 

technological importance of a patent can easily be measured after several years by its number of 

citations (Häussler et al., 2014). Thus, we assume that an inventor obtaining many citations for a first 

patent signals higher inventive capacity. The positive reputation effect of a highly cited patent may be 

especially strong for the first patent because young inventors typically are not in a high hierarchical 

position and have short professional experience. Attribution on patents indicating a contribution to 

the inventive process is positively related to seniority and hierarchical position (Lissoni & Montobbio, 

2014). Our second hypothesis is: 
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Hypothesis A2: Inventors whose first patent is of higher quality than their peers have a higher inventive 

performance for the remainder of their career. 

Speed and high quality of the first patent may be substitutes. Jones (2010) pointed out that young 

inventors must decide how to divide their time between education or training and inventive activity. 

If they spend more time working on their inventive idea, this may allow them to apply for the first 

patent sooner, but reduce the technological importance of the first patent. Therefore, we assume that 

few inventors who apply for their first patent quickly also obtain many citations for their first patent 

and that:  

Hypothesis A3: Fast first patent and high-quality first patent have an independent correlation with 

inventive performance for the remainder of the career. 

There is a rich body of literature on determinants of inventive productivity (for example, Huber, 1998; 

Hoisl, 2007a,b; Giuri et al., 2007; Mariani & Romanelli, 2007; Walsh & Nagaoka, 2009; Toivanen & 

Vaananen, 2012; Zwick et al., 2017). However, we are aware of only three papers that analyze the 

quality of early career achievements as predictors of inventive career productivity.2 Audia & Goncalo 

(2007) showed that previous inventive success leads to a higher probability of generating further 

inventions. They argued that the inventions after past successes are more frequently characterized by 

exploitation of earlier ideas instead of exploration of new ideas. However, patents based on 

exploitative ideas receive fewer citations, and thus have lower economic value and inventive quality 

than patents based on explorative ideas (Harhoff et al., 1999; Gambardella et al., 2008). Dietz & 

Bozeman (2005) analyzed CV information merged with patent data of 1200 research scientists and 

engineers working for the US Department of Energy, Department of Defense, and National Science 

Foundation. They found that scientists who have many publications before obtaining their doctoral 

degree have a higher number of patents per career year on average. Finally, Lawson & Sterzi (2014) 

looked at the patenting record of more than 500 British academic inventors. Based on CV information, 

they showed that the number of citations the first patent receives is the most important predictor for 

the number of patents an academic inventor obtains during their career, although the number of 

citations does not affect overall patenting productivity. They concluded that a high-quality first 

invention signals a high overall career output for an individual inventor. 

The differences in the results among these three papers may come from several sources. Audia & 

Goncalo (2007) did not only look at the first patent of an inventor, but also analysed the relationship 

between patenting success over a period of 2 years and patenting behaviour in the following years, 

 
2 The early literature on the impact of early success on productivity shows that more productive scientists and 
inventors start their career earlier (Manis, 1951; Zuckerman, 1967; Blackburn et al., 1978). Another persistent 
finding is that higher inventive productivity during the first career years is correlated with higher productivity in 
the following career years (Meltzer, 1949; Lightfield, 1971; Clemente, 1973; Reskin, 1977). 
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irrespective of the state of the career. Their results came from patents in the hard disk drive sector, a 

nascent technology sector during the period they observed. Dietz & Bozeman (2005) and Lawson & 

Sterzi (2014) concentrated on the small and probably specific sub-group of academic inventors. 

Consequently, the results of all three papers may not be easy to generalize. 

Early Patenting Success as Trigger for Cumulative Advantage 
We postulate that early patenting success signals individual inventive ability. However, inventors with 

early patenting success may also profit from cumulative advantage, as explained in Merton’s famous 

definition of the Matthew effect: “the accruing of greater increments of recognition of particular 

scientific contributions to scientists of considerable repute and the withholding of such recognition 

from scientists who have not yet made their mark” Merton (1973b, p. 446). Cumulative advantage 

means that early success attracts new resources as well as rewards. Given the uncertainty about the 

ability and motivation of inventors, employers attribute more scarce resources to inventors with an 

early success. The additional resources facilitate continued higher performance given the ability of the 

inventor (Owen-Smith & Powell, 2001; DiPrete & Eirich, 2008). In the extreme case, cumulative 

advantage completely explains higher career productivity instead of ability. In other words, lucky 

inventors can turn fortuitous early patents into lasting inventive productivity advantages (Cole & Cole, 

1967; Allison et al., 1982).  

Cumulative advantage can be shown empirically if high inventive productivity during the first career 

years positively correlates with inventive productivity during the remainder of the career. Our first 

cumulative advantage hypothesis is: 

Hypothesis CA1: Inventive productivity during the first career years is positively correlated with the 

increase in inventive productivity in the remainder of the career.  

DiPrete & Eirich (2008) posited that a small advantage during the early stage of the inventive process 

means that inventors have a long-term positive productivity effect in a cumulative advantage process. 

Thus, we assume that precocious inventors have an even steeper productivity trajectory between first 

career years and their remaining career. In other words, high early productivity leads to stronger 

cumulative advantage if the first patent is fast and high quality. We also assume that a fast patent and 

a high-quality first patent have an independent additional effect on cumulative advantage as posited 

in hypothesis A3: 

Hypothesis CA2: The positive correlation between inventive productivity during the first career years 

and inventive productivity during the remainder of the career is stronger for inventors with a fast first 

patent.  
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Hypothesis CA3: The positive correlation between inventive productivity during the first career years 

and inventive productivity during the remainder of the career is stronger for inventors with a high-

quality first patent.  

Hypothesis CA4: The higher positive correlation between inventive productivity during the first career 

years and inventive productivity during the remainder of the career is independent for inventors with 

a fast patent and for inventors with a high-quality patent. 

Cumulative advantage can not only be tested by the correlation between early career productivity and 

the inventive productivity during the remaining career, but it also can be shown when the employer 

attributes additional resources to inventors with high early productivity (Owen-Smith & Powell, 2001; 

Toivanen & Väänänen, 2012). Precocious inventors may have a better chance of working on R&D 

projects later in their career, and they are encouraged to invest time in research instead of 

management or organisation tasks (Merton, 1973a). This cumulative advantage mechanism assumes 

that employers put their best researchers on the most promising inventive projects and grant them 

enough time and resources to complete these projects (Zucker et al., 1998, 2002). Therefore, we 

assume: 

Hypothesis CA5: Early patenting success is positively correlated with the share of the working time an 

inventor can spend on R&D tasks in later career years.  

According to the signalling theory described above, outside employers can also observe precocious 

inventors easily (Melero et al., 2020). Their visibility increases the likelihood of being poached or 

moving voluntarily to another employer to improve job matching (Lazear, 1986). Job mobility may 

increase individual productivity because it allows employees to increase the quality of their job match, 

exchange their knowledge, build more experience, and enlarge their research network (Song et al., 

2003; Dietz & Bozeman, 2005; Hoisl, 2007a). Especially if the new employer offers a better research 

environment, an employer move increases individual career productivity (Crane, 1965; Cole and Cole, 

1967; Long, 1978). The quality of the research environment may be measured by the number of 

patents an employer has applied for (Czarnitzki et al., 2012; Mariani & Romanelli, 2007; Chabchoub & 

Niosi, 2005; Harhoff & Hoisl, 2010; Mansfield, 1986; Scherer, 1999; Lawson & Sterzi, 2014). Our next 

two hypotheses are: 

Hypothesis CA6: Early patenting success is positively correlated with the probability of moving 

voluntarily to another employer in later career years. 

Hypothesis CA7: Early patenting success is positively correlated with the probability of moving to an 

employer with a stronger research orientation in later career years. 



 

8 
 

Inventors with an early patent success may also benefit from better research co-operation options 

with other inventors (Baldini et al., 2007). There is empirical evidence that high-impact scientists enjoy 

more extensive exchange and better co-operation options with other inventors. Owen-Smith & Powell 

(2001) suggested that academic inventors with high-quality patents attract more consulting jobs and 

research contracts that allow them to improve their research network. Thus, we assume that early 

patenting success allows inventors to increase the number of co-operators. However, a larger research 

network results in higher inventive productivity because inventors can share or recombine their 

knowledge (Crane, 1972; Allen, 1979; Simonton, 1992, 2003; Dunbar, 1995; Breschi & Lissoni, 2009; 

Dietz & Bozeman, 2005; Jones, 2009). Our last cumulative advantage hypothesis is:  

Hypothesis CA8: Early patenting success is positively correlated with the number of co-inventors in 

later career years. 

The empirical literature on the role of cumulative advantage for the productivity of inventors is 

tenuous and equivocal, see for example the literature reviews by Allison et al., (1982) and DiPrete & 

Eirich (2008). Sociological papers mainly show an increase in inequality in publications and citations 

over the life cycle of the entire population or certain birth cohorts of scientists, compare Crane (1965, 

1972), Cole & Cole (1967), and Allison and Stewart (1974). These papers do not show concrete 

cumulative advantage mechanisms, such as the attribution of resources to scientists with previous 

successes (DiPrete & Eirich, 2008). These works may also suffer from the compositional fallacy 

(Simonton, 1997). The compositional fallacy describes aggregation errors if inferences about individual 

experience–productivity patterns are derived from average statistics across many individuals. The 

resulting patterns may, for example, be biased if more productive inventors are active longer in R&D 

than less productive inventors (Huber, 2002). Hence, the scientometrics literature proposes testing 

directly whether inventors with early successes have a higher productivity rate during the rest of their 

career (Lotka, 1926; Levine, 1986). The only paper with a direct cumulative advantage test based on 

individual inventor productivity measures does not find evidence for a cumulative productivity 

advantage during the career (Huber, 1998). 

3 Methodology and Data 

Methodology 

We measure the correlation of the speed and the quality of the first patent with inventive output 

during the remaining career and additionally control for the relevant individual and work environment 

characteristics when the first patent is applied for. Our empirical model is 

  𝑌𝑖𝑐 = 𝛽1𝑓𝑎𝑠𝑡𝑖𝑝1 + 𝛽2ℎ𝑖𝑔ℎ𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑖𝑝1 + 𝛿`𝑋𝑖𝑝1 + 𝜖𝑖𝑐 .    (1) 



 

9 
 

To avoid heterogeneity, career output Yitc is measured for the entire career (c) excluding the first patent 

(p1). Early patenting success is denoted by the dummy variables fast and highquality based on the 

speed and quality of the first patent. Variable Xip1 denotes a vector of control variables for individual 

characteristics and the inventor’s work environment when the first patent was applied for. Variable ɛ 

is the idiosyncratic error term. Our identification strategy assumes that there are no unobserved 

factors that are correlated with early patenting success and overall inventive career productivity after 

the first patent. Therefore, we include a broad range of individual and work environment factors.  

In our next estimation step, we check whether there is a positive correlation between inventive 

productivity during the first career years, t1, and inventive productivity during the remainder of the 

career, t2, that can be explained by cumulative advantage. We use a differential equation of 

exponential growth (Yule process) as a formal empirical test of the presence of cumulative advantage3,  

  Yit2 – Yit1 = βYit1 + δ´Zit1 + ꞓit1,       (2) 

with Zit1, which is a vector of resources available for the inventor during the first career years. 

Cumulative advantage means that a high productivity during t1 (Yit1) increases the difference in 

productivity between t1 and the remainder of the career, t2 (Yit2 - Yit1). Hence, cumulative advantage 

implies a positive slope parameter, β. If, according to hypotheses CA2–CA4, precocious inventors enjoy 

a stronger cumulative advantage, this can be measured by higher β values for inventors with early 

patenting success.  

In a final estimation step, we analyse actual cumulative advantage mechanisms according to our 

hypotheses. We use difference-in-differences estimations that show whether inventors with early 

patenting success enjoy a better attribution of resources during the remainder of their career. 

Specifically, we check whether the share of R&D activities during working time, the size of the patent 

applicant, the probability of a voluntary job match, and the number of co-inventors increase more 

strongly from t1 to t2 for inventors with an early success. The changes in resources are calculated 

separately for the four dimensions of indicator Z. We include indicators for resources available for the 

two periods t = t1, t2 for each inventor and control for individual fixed effects γi besides the interaction 

terms between the early success indicators and t2 as well as a dummy for t2.  

  𝑍𝑖𝑡 = 𝛽1𝑓𝑎𝑠𝑡𝑖 ∗ 𝑡2 + 𝛽2ℎ𝑖𝑔ℎ𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑖 ∗ 𝑡2 + 𝛽3𝑡2 + 𝛾𝑖 + 𝜖𝑖𝑡.   (3) 

Cumulative advantage for inventors with an early success predicts positive coefficients β1 and β2. 

 
3 This test was proposed by Allison et al. (1982), also compare equation (3) in DiPrete & Eirich (2008). 
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Data  

Our dataset combines patent data and individual survey data. The patenting activity of the inventors 

is measured using PATSTAT data for patents of German inventors filed between 1978 and 2010 at the 

European Patent Office. The patent data include the first filing date of a patent on a daily basis, the 

status of the patent application, number of co-inventors, number of forward citations per patent 

received during a specific time period, type of patent applicant, and technology sector. The application 

date of the first patent4 determines individual age at first patent and the number of years since 

obtaining the highest educational degree (derived from the inventor survey). 

The patent data are merged with survey data that contain the highest educational grade, social 

demographics, and personality traits.5 We use a calendar function in the survey to describe changes in 

the work environment during the career. The calendar captures key career characteristics during five-

year spells between 1965 and 2014. As our patent information ranges from 1978 to 2010, seven spells 

from the calendar can be used.6 According to our estimation strategy, we differentiate between the 

first career years in which the first patent was applied for (t1) and all following active periods (t2). We 

define as the last (observable) career period the period in which the inventor reaches age 65, the 

period with the last observable patent for those 41 inventors who applied for patents when they were 

older than 65 years, or the period 2005–2010. Thus, the number of periods included in t2 depends on 

the application date of the first patent. On average, inventors report for 2.3 calendar periods (11.5 

years) after t1. In other words, we can observe the work environment for on average 3.3 periods or 

16.5 years. The distribution of the observed number of calendar periods is shown in Table A1.  

We calculate career productivity in equation (1) by dividing the number of patents and their citations 

by the number of career years c (last career year minus year after the first patent application). In the 

cumulative advantage equations (2) and (3), we compare average inventive productivity and resources 

for t1 and t2. The periodicity of t1 and t2 comes from the mainly 5-year periods given in our calendar. 

Five-year brackets are useful for measuring inventive productivity to examine differences in inventive 

productivity over time because patents tend to be applied for in waves (Huber, 1998; Hoisl, 2007b). 

There is a high risk of measurement errors incurred by attrition bias with shorter productivity 

measurement brackets, for example, single years. Accordingly, most papers measure inventive 

productivity and its changes in time brackets of between 4 and 10 years (see the literature survey in 

Zwick & Frosch, 2017).  

 
4 No inventor had applied for more than one patent on the day of the first patent application. Therefore, we can 
determine the first patent with certainty. 
5 For details of the data collection and matching process, see Frosch et al. (2014) and Zwick et al. (2017).  
6 The seven spells are 1978–1979; 1980–1984; 1985–1989; 1990–1994; 1995–1999; 2000–2004; and 2005–2010. 



 

11 
 

The patent data are from an administrative source. Thus, we have robust, non-biased information on 

patent quantity and quality.7 We use the patent data as the source for the dependent variable in 

equations (1) and (2) as well as for estimating the number of co-inventors and the applicant size in 

equation (3). Early inventive success is measured by aggregating the patent information over all 

inventors. Almost all additional information used as dependent variables comes from the survey data. 

Therefore, we can rule out a common method bias. Information on the educational and family 

background can be assumed plausibly to pre-date the start of the career, even though the information 

was collected at the end of the observation period. However, some survey information on personality 

traits, such as self-assessment on risk taking, might not reflect the situation at the time of the first 

patent.8  

There are 1851 inventors in the data set. For the 298 inventors who started their career before 1978, 

the first patent cannot be identified with certainty in the dataset and these inventors are excluded 

from the dataset. In addition, we only know the year in which the highest educational degree was 

obtained for 1492 inventors. From this group, 252 inventors only applied for one patent in their 

recorded PATSTAT patenting activity. They are excluded from our estimations to allow the effect of 

the first patent on later career productivity to be identified.9 Consequently, our basic sample consists 

of 1240 inventors (67% of the original sample).10 

Inventive Productivity 

In line with the literature (Trajtenberg, 1990; Albert et al., 1991; Harhoff et al., 1999; Bakker et al., 

2016; Hoisl, 2007b), quantitative and qualitative measures of patent productivity are used. To account 

for differences in the career length between more and less prolific inventors (Huber, 2002), the 

productivity measures are standardized by years of job experience, and thus are independent of total 

career length (Huber, 1998; Dietz & Bozeman, 2005). 

Patent quantity: Patent quantity is measured by the total number of patents applied for per inventor 

minus the first patent divided by the number of career years, c, after the first patent in the productivity 

equation. In the cumulative advantage regressions, patent quantity is measured by the total number 

 
7 In contrast to other studies, we cannot exclude potential self-citations at inventor level. This might imply that 
some results for patent quality are overestimated. 
8 There remains, as in any survey data, the risk of measurement errors. 
9 We also have to exclude one inventor who applied for all (two) patents within one 5-year period. All remaining 
inventors have at least one patent in at least one period after the first application period. 
10 According to our hypothesis that early patenting success is a good predictor of future inventive productivity, 
inventors with only one patent less frequently had an early success with it (the share with a fast dummy is 19% 
and the share with a high-quality dummy is 21%). 
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of patents applied for per inventor in t1 and in t2, respectively, divided by the period lengths of t1 and 

t2. 

Patent quality: We use forward citations of patents within 5 years of its filing to measure the quality 

of a patent (Trajtenberg, 1990; Albert et al., 1991; Harhoff et al., 1999; Lawson & Sterzi, 2014; Bakker 

et al., 2016). Our measure for patent quality is the total sum of citations without the citations of the 

first patent divided by c in the productivity estimations. In the cumulative advantage regressions, the 

sum of the citations of all patents applied for during t1 and t2 is divided by the period lengths of both 

periods. 

Early Patenting Success 

High-quality first patent: We define a high-quality first patent as a dummy that is 1 if the first patent 

is among the best 25% first patents of our sample, ranked by the total number of forward citations 

(within 5 years of filing).  

Fast first patent: We define a first patent as being filed fast if an inventor belongs to the 25% fastest 

inventors in our sample to file the first patent after obtaining the highest degree of education. We use 

the time span between the end of education and first patent instead of age to include the trade-off 

between education and inventive effort as well as differences in educational attainment (Jones, 2010). 

Control Variables 

We control for gender differences because career strategies and inventive productivity may differ 

between men and women (Jung & Ejermo, 2014; Hunt et al., 2012; Ding et al., 2006; Whittington, 

2011; Whittington & Smith-Doerr, 2005; Frietsch et al., 2009; Naldi et al., 2005). We also use controls 

for birth cohorts because patenting behaviour may have changed over the years, given the patent 

explosion (Hall, 2004; Lawson & Sterzi, 2014) and the increase in average age at first patent (Jones, 

2009). The strong increase in the number of patent applications during the last decades and the 

increasing burden of knowledge in many technology areas may imply a difference in the chance of 

patenting an inventive idea within 5 years of obtaining the highest education in the year 1980 or in the 

year 2000 (Levin & Stephan, 1991; Jones, 2009; Jones, 2010; Allen & Katz, 1992; Simonton, 1988; 

Harhoff & Wagner, 2005; Dietz & Bozeman, 2005). We also control for education level because a higher 

education, particularly a PhD degree, increases inventive productivity (Hoisl, 2007a; Mariani & 

Romanelli, 2007; Onishi & Nagaoka, 2012; Toivanen & Väänänen, 2016; Giuri et al., 2007; Akcigit et al., 

2017). An engineering specialisation during schooling may be a boon for inventive output (Gruber et 

al., 2013). Therefore, we include a dummy variable for inventors who have an engineering 

specialisation in their academic education or a technical occupation for those without academic 
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training. In addition, family background may influence inventive productivity; academically educated 

parents may foster an inventor’s achievement (Caldas & Bankston, 1997). Hence, we include dummy 

variables that have a value of 1 if an inventor has a father or a mother with academic education, 

respectively. 

Previous studies on inventive output find a relationship between personality traits and inventive 

performance (Dodds et al., 2002). Particularly the personality dimension openness to new experiences 

is positively related to innovative output (McCrae, 1987; King et al., 1996; Furnham & Bachtiar, 2008; 

Sung & Choi, 2009; Silvia et al., 2009; Furnham et al., 2011; Furnham et al., 2013; Lin et al., 2013; Grosul 

& Feist, 2014; Batey et al., 2010; Zwick et al., 2017). We include the big 5 personality inventory 

(openness to experience (ideas, aesthetics), agreeableness (compliance, straightforwardness), 

conscientiousness (order, dutifulness, competence), extraversion (warmth, sociability, activity), and 

neuroticism (anxiety, depression), compare McCrae and Costa, 2006) as explanatory variables. 

Willingness to take risks also is a personality characteristic often related to inventive performance, and 

thus is controlled for in this paper (Dewett, 2007; Audia & Goncalo, 2007; Zwick et al., 2017).  

Although individual characteristics are key for inventive productivity, the employer is also an important 

determinant of patenting success (Gambardella et al., 2008; Lawson & Sterzi, 2014). Therefore, we 

control for the share of working time the inventor can devote to R&D activities, the number of co-

inventors, the size of the employer, and a voluntary job move. In addition, we control for the employer 

type because it may make a difference whether the inventor works for a private firm, a university, or 

a public research institute (Dietz & Bozeman, 2005; Van Looy et al., 2006; Zucker et al., 2007; Crescenzi 

et al., 2017).  

The literature is unclear whether basic or applied research activities have a stronger positive 

relationship with inventive productivity (Mansfield, 1980; Griliches, 1986; Lichtenberg & Siegel, 1991). 

Specific knowledge contributes to innovation and generalist knowledge facilitates recombination of 

ideas. Previous research also shows ambiguous results on whether working as a specialist or as a 

generalist is related to a higher inventive productivity (Jones, 2009; Melero & Palomeras, 2015). We 

control for the type of research activities an inventor pursues. Technology fields have different R&D 

and patenting activity levels (Klevorick et al., 1995; Gruber et al., 2013; Mansfield, 1986; Levin et al., 

1987). Therefore, we control for the main technology sector in which an inventor is active. Following 

Griliches (1990) and Hoisl (2007a, 2009), we also control for the status of the patent application, which 

may be pending, refused, withdrawn, or granted. 
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4 Early Patent Success and Inventive Performance  

Descriptive Statistics 

Table 1 shows that during the career, an inventor in our sample files 0.61 patent applications per 

working year and obtains 0.55 citations per working year. The share of male inventors is 97.7%11. 

Around 92% of inventors in the dataset hold an academic degree including a PhD. More than two thirds 

of the inventors are engineers. About 10% of the inventors’ mothers and 24% of the inventors’ fathers 

have an academic degree. When filing their first patent, inventors are on average nearly 40 years old12 

(not shown in the descriptive statistics).  

  

 
11 The small share of 2.3% females is in line with other studies (Jung & Ejermo, 2014; Hunt et al., 2012). 
12 This value is close to the 41.4 years reported for the first patent of Swedish inventors (Jung & Ejermo, 2014). 
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Variables Mean SD Median Description 

Inventive output     
Patent quantity 0.606 0.841 0.353 Total numbers of patents per inventor (1978–2010), divided by number of working 

years 
Patent quality  0.547 1.126 0.160 Total numbers of citations per inventor (1978–2010), divided by number of working 

years 
Early inventive success     
High-quality first patent  0.289 0.453 0 Dummy = 1 if the first patent is cited at least twice within 5 years of filing  
Fast first patent  0.321 0.467 0 Dummy = 1 if the first patent is filed within 4 years of obtaining the highest 

educational degree 
Individual background     
Male 0.977 0.150 1 Dummy = 1 if inventor is male 
Vocational education 0.080 0.271 0 Dummy = 1 if highest level of education is vocational education  
Academic education 0.544 0.498 1 Dummy = 1 if highest level of education is academic education 
PhD 0.376 0.485 0 Dummy = 1 if highest level of education is PhD 
Education with engineering 
specialisation 

0.690 0.463 1 Dummy = 1 if the inventor has an educational background in engineering 

Mother academic 0.100 0.300 0 Dummy = 1 if mother is academic 
Father academic 0.235 0.424 0 Dummy = 1 if father is academic  
Personality     
Positive risk attitude 0.392 0.488 0 Dummy = 1 if self-assessed risk attitude 7 or higher on scale between 0 and 10 
Big 5 extraversion 49.60 15.43 49.37 Factor from factor analysis on 15 questions on personality traits 
Big 5 neuroticism 49.51 11.11 48.80 Factor from factor analysis on 15 questions on personality traits 
Big 5 openness to new ideas 49.56 18.58 50.41 Factor from factor analysis on 15 questions on personality traits 
Big 5 agreeableness 50.36 12.08 49.88 Factor from factor analysis on 15 questions on personality traits 
Big 5 conscientiousness 50.35 11.83 50.93 Factor from factor analysis on 15 questions on personality traits 
Work environment first patent     
Generalist work experience 0.667 0.472 1 Dummy = 1 if inventor worked as a generalist  
Applied R&D 0.831 0.375 1 Dummy = 1 if inventor worked in applied R&D  
Basic R&D 0.131 0.338 0 Dummy = 1 if inventor worked in basic R&D  
Intensive R&D work 0.637 0.481 1 Dummy = 1 if share of R&D work is more than half of the working time  
Applicant size 1–24 0.285 0.451 0 Dummy = 1 if applicant with 1–24 patents 
Applicant size 25–249 0.283 0.451 0 Dummy = 1 if applicant with 25–249 patents 
Applicant size 250–999 0.136 0.343 0 Dummy = 1 if applicant with 250–999 patents 
Applicant size 1000+ 0.125 0.331 0 Dummy = 1 if applicant with 1000+ patents 
Applicant firm  0.947 0.225 1 Dummy = 1 if applicant private company  
Applicant university or public research 
institute 

0.040 0.197 0 Dummy = 1 if applicant university/research institute 

Applicant individual 0.013 0.113 0 Dummy = 1 if individual applicant 
Number of co-inventors 0 0.121 0.326 0 Dummy = 1 if number of co-inventors is 0  
Number of co-inventors 1 0.206 0.404 0 Dummy = 1 if number of co-inventors is 1 
Number of co-inventors 2–3 0.402 0.491 0 Dummy = 1 if number of co-inventors is 2–3 
Number of co-inventors 4+ 0.271 0.445 0 Dummy = 1 if number of co-inventors is 4+ 
First patent is refused  0.173 0.378 0 Dummy = 1 if patent application of first patent is refused 
First patent is granted  0.601 0.490 1 Dummy = 1 if patent application of first patent is granted 
First patent is pending  0.212 0.409 0 Dummy = 1 if patent application of first patent is pending 
First patent is withdrawn  0.015 0.120 0 Dummy = 1 if patent application of first patent is withdrawn 
Birth cohorts     
Birth year after 1970 0.208 0.406 0 Dummy = 1 if inventor was born after 1970  
Birth year 1966–1970 0.234 0.423 0 Dummy = 1 if inventor was born between 1966 and 1970 
Birth year 1961–1965 0.248 0.432 0 Dummy = 1 if inventor was born between 1961 and 1965 
Birth year 1956–1960 0.174 0.379 0 Dummy = 1 if inventor was born between 1956 and 1960 
Birth year before 1956 0.135 0.342 0 Dummy = 1 if inventor was born before 1956  
Technology fields first patent     
Electrical engineering  0.088 0.284 0 Dummy = 1 if main field of technology is electrical engineering 
ICT 0.015 0.122 0 Dummy = 1 if main field of technology is ICT 
Semiconductors 0.027 0.161 0 Dummy = 1 if main field of technology is semiconductors 
Instruments 0.018 0.134 0 Dummy = 1 if main field of technology is instruments 
Chemical industry 0.058 0.234 0 Dummy = 1 if main field of technology is chemical industry 
Pharma/biotechnology 0.021 0.143 0 Dummy = 1 if main field of technology is pharma/biotechnology 
Chemical and process engineering 0.063 0.243 0 Dummy = 1 if main field of technology is chemical and process engineering 
Transportation/engines 0.255 0.436 0 Dummy = 1 if main field of technology is transportation/engines 
Consumption 0.021 0.143 0 Dummy = 1 if main field of technology is consumption 
Mechanical engineering/machinery 0.101 0.301 0 Dummy = 1 if main field of technology is mechanical engineering/machinery 
Mechanical elements 0.086 0.280 0 Dummy = 1 if main field of technology is mechanical elements 
Nanotechnology 0.047 0.211 0 Dummy = 1 if main field of technology is nanotechnology 
Clean technology 0.098 0.298 0 Dummy = 1 if main field of technology is clean technology 
Other technology fields 0.103 0.304 0 Dummy = 1 if main field of technology is other technology fields 

Table 1: Variable descriptions and descriptive results (n = 1240). SD: standard deviation; ICT: information and communications 
technology. 
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Less than 30% of the inventors have a first patent that was cited more than twice within 5 years, and 

thus qualify for our first indicator of early success. More than 30% of the inventors are in the fastest 

quartile of inventors who applied for their first patent within 4 years of obtaining their highest 

education degree. 

The Big Five personality dimensions of an inventor are measured on a 15-item short version of the Big 

Five inventory (7-point Likert scale; compare Schupp & Gerlitz, 2014). The five personality dimensions 

are aggregated by a principal components factor analysis with varimax rotation (negatively defined 

items are rescaled; compare Zwick et al., 2017). About 40% of the inventors opt for a score of 7 or 

higher on a Likert scale that ranges from 0 (highly risk averse) to 10 (highly risk seeking) (compare 

Dohmen et al., 2011).  

The first patent of an inventor is filed on average with about three co-inventors (the maximum is 24 

co-inventors). For first patents, 60% are granted, around 21% are pending, fewer than 18% are refused, 

and the rest are withdrawn by the applicant. The first patent applicant is almost always a private firm 

(95%). Most of the inventors in our sample work in applied R&D instead of basic R&D when they apply 

for their first patent (83%). About 64% of the inventors report an R&D working time share of more 

than half. The ratio of inventors who are specialists to those who are generalists is about 1:2 when 

they file their first patent  

Figure A1 shows that the number of patents and their citations per inventor are right-skewed. These 

results are consistent with findings in other studies on patenting success (Huber, 1998; Toivanen & 

Väänänen, 2012, 2016; Azoulay et al., 2010). Consequently, the individual shares of the total number 

of patents and citations closely match Lotka’s law.13 The skewed distribution of the dependent 

variables requires a negative binomial model (count model) (Allison et al., 1982; Huber, 2002). 

Therefore, we use a Poisson regression model14 with parameter λ (Baruffaldi et al., 2016; Sapsalis et 

al., 2006) and our estimation equation (1) is written as 

  Yit2  Poisson(μ*
i) 

  μ*
I = exp(γ´Yi + ui) 

  exp(ui)  Gamma(1/α, 1/α), 

 
13 Lotka’s law can be expressed as pn = p1/nk, where pn is the proportion of inventors with n patents in all 
inventors, p1 is the number of inventors with one patent, and k is a constant (Huber, 2002). The goodness of fit 
values, R2, for all regressions on the distributional form of our sample are higher than 0.94. Thus, the empirical 
distributions closely match the theoretical distributions for the number of patents and their citations. 
14 Our dependent variables fit a Poisson distribution according to a Chi2 goodness of fit test (Table A2). A Jacques-
Bera and a Shapiro-Wilk-test for normal distribution indicate significant deviations of our dependent variables 
from a normal distribution. 
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where γ is the vector of parameters associated with the vector of explanatory variables Yi (Xip1, fast 

and highquality) and α is the overdispersion parameter. The econometric model of the inventive 

productivity estimation is 

 𝜆𝑖̂ = exp(𝛽1𝑓𝑎𝑠𝑡𝑖𝑝1 + 𝛽2ℎ𝑖𝑔ℎ𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑖𝑝1 + 𝛿`𝑋𝑖𝑝1 + 𝜖𝑖𝑡𝑐),     (4) 

where 𝜆𝑖̂ is the estimator of the Poisson parameter. 

Tables A3a and A3b summarize the correlations between the most important variables. Our two 

indicators for early inventive success are strongly positively correlated with the two inventive 

productivity measures. The inventive productivity measures have a high positive correlation with each 

other. According to hypothesis A3, the two early success measures hardly correlate with each other. 

Finally, we show that precocious inventors have more patents and more citations per career year than 

inventors without early success. Average patent number increases slightly for inventors with early 

success but decreases for inventors without early success from t1 to t2. Average patent quality is 

higher in t1 than in t2 for all four groups (Figure 1). The decrease in patent quality from t1 to t2 supports 

the idea of a decrease in inventive capability with age (Jones, 2010), in contrast to the slight increase 

in the number of patents for precocious inventors. Besides a decrease in inventive capability, a 

decrease in patenting success over the career may also be a consequence of industrial inventors being 

promoted to managerial tasks (Hoisl, 2007b). 

  

Figure 1: Average productivity in t1 and t2 of inventors with and without early success (n = 1240). 
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The higher productivity of precocious inventors is matched by the better resource endowment of this 

group of inventors during t1 (Table A4). Inventors with a fast and/or a high-quality first patent have 

more co-inventors, larger employers, and a higher share of R&D time in their early career years than 

their peers without an early success. We also find that a higher number of precocious inventors 

voluntarily move to another employer in t1, although we do not know whether this move occurs before 

or after the first patent application.  

Correlations Between Early Success and Career Inventive Performance 
We assess the relationship between early patenting success and inventive career output in a 

multivariate Poisson regression according to equation (4) for patent quantity (Table 2) and patent 

quality (Table 3). In models 1 and 2 of each regression table, only one of the two indicators for early 

patenting success is used as an explanatory variable. In model 3, both variables are included. Controls 

are added in a stepwise manner in models 4 to 6; first individual characteristics are added, and then 

the work environment during the first patent application.  

Without any further controls, inventors with a high-quality first patent file 25.9% more patents per 

working year during their career, c (Table 2, column 1; p < 0.01).15 A fast first patent results in more 

than twice as many patents compared with the reference group (Table 2, column 2; p < 0.01). If we 

include all control variables, there still is a sizeable effect of 59.4% more patents (p < 0.01) for fast 

inventors, and of 19.4% more patents for inventors with a high-quality first patent. The effects of early 

patenting success on patenting quality during the career are similar: a highly cited first patent increases 

the average number of citations received per work year by 66% after including all controls (Table 3, 

model 6, p < 0.01). Likewise, a fast first patent results in an increase in patent citations of 81% (p < 

0.01). The coefficients of the early success indicators do not change if the other indicator is added. 

Hence, both early success indicators are independently positively correlated with inventive success.16 

These empirical results support our hypotheses A1–A3.  

The covariates in our regressions in Table 2 give us results previously found in the inventor productivity 

literature. Male inventors and inventors with a PhD have significantly higher career productivity. A 

specialisation in engineering and parents with an academic degree do not additionally drive 

productivity. Inventors with a positive risk attitude and with a high openness to new ideas have a 

 
15 We can interpret the coefficients in terms of incidence rate ratios (IRRs). The coefficients of a Poisson 
regression represent the log changes of the dependent variables after a change of the independent variable. The 
interpretation of these coefficients is not always straightforward. IRRs are an alternative representation. These 
ratios show the expected change in the incidence of the outcome variable after increasing the dependent 
variable by one unit. For dummy and categorical variables, the IRR represents the relative incidence relative to 
the reference category. The IRRs are obtained by using the exponential form of the coefficients, that is, the IRR 

of coefficient 𝛽 is calculated as 𝑒𝛽. IRRs are interpreted as multiplicative. An IRR above 1 represents an increase 
and an IRR below 1 represents a decrease of the dependent variable after a change in the independent variable. 
16 An interaction term between both variables is insignificant. 
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higher productivity, whereas extrovert and conscientious inventors have a lower productivity. 

Generalist work experience and a high R&D share when the first patent is applied for increase career 

productivity. Mid-sized patent applicants for the first patent have a stronger positive correlation with 

career productivity than small and very large applicants. An industrial applicant for the first patent 

leads to higher career productivity than a university, public research institution, or an individual 

applicant. The number of co-inventors and mainly working in basic or applied research activities when 

applying for the first patent do not have a productivity effect. Including individual and work 

environment characteristics more than doubles R2 from 5% to 11%. 

  (1) (2) (3) (4) (5) (6) 

Variables 
Patent 

quantity 
Patent 

quantity 
Patent 

quantity 
Patent 

quantity 
Patent 

quantity 
Patent 

quantity 

High-quality first patent  1.259**  1.274*** 1.238*** 1.248*** 1.194** 
Fast first patent   2.190*** 2.197*** 1.895*** 1.859*** 1.594*** 

Individual background       
Male    1.787** 1.567** 1.638** 
Academic education    1.053 1.095 1.077 
PhD    1.439* 1.478** 1.423** 
Education with engineering 
specialisation    0.884 0.896 0.919 
Mother academic    1.062 1.065 1.075 
Father academic    0.932 0.911 0.908 

Personality       
Positive risk attitude     1.167* 1.179** 
Big 5 extraversion     0.994* 0.994** 
Big 5 neuroticism     0.996 0.995 
Big 5 openness to new ideas     1.011*** 1.012*** 
Big 5 agreeableness     0.996 0.996 
Big 5 conscientiousness     0.993** 0.993** 

Work environment first patent       
Generalist work experience      1.189* 
Applied R&D      0.924 
Basic R&D      1.055 
Intensive R&D work      1.552*** 
Applicant size 25–249      1.231** 
Applicant size 250–999      1.401*** 
Applicant size 1000+      1.199 
Applicant university or public 
research institute      0.634*** 
Applicant individual      0.422*** 
Number of co-inventors 1      1.008 
Number of co-inventors 2–3      0.952 
Number of co-inventors 4+      0.989 

Observations 997 997 997 997 997 997 
Pseudo R2 0.004 0.045 0.049 0.077 0.088 0.113 
Log-Likelihood -974.9 -933.9 -930.1 -903.4 -892.6 -868.2 

Birth year periods - 5 categories Yes Yes Yes Yes Yes Yes 
Main technology field - 14 
categories Yes Yes Yes Yes Yes Yes 
First patent status - 4 categories No No No No No Yes 

Table 2: Career productivity estimation, quantity. Poisson regression. Table shows incidence rate ratios. 
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 
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Table 3: Career productivity estimation, quality. Poisson regression. Table shows incidence rate ratios. 
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 

Robustness Checks 
In our robustness checks, we first vary the dependent variables. We use fractional counts or, in other 

words, we also divide inventive output by the number of co-inventors (Table A5, columns 1 and 2). In 

addition, we extend the time period for citations from 5 to 10 years for our quality measure (Table A5, 

column 3). Finally, we divide the number of citations by patents instead of work years (Table A5, 

column 4). The results remain robust.  

We then use alternative indicators for early patenting success. First, we extend the period in which 

citations are counted from 5 to 10 years (Table A6, columns 1 and 2). Second, we use a dummy for 

inventors who applied for their first patent before the start of their career instead of within 4 years of 

  (1) (2) (3) (4) (5) (6) 

Variables 
Patent 
quality  

Patent 
quality  

Patent 
quality  

Patent 
quality  

Patent 
quality  

Patent 
quality  

High-quality first patent  1.895***  1.919*** 1.764*** 1.758*** 1.660*** 
Fast first patent   2.376*** 2.398*** 2.443*** 2.342*** 1.811*** 

Individual background       
Male    1.919** 1.734* 1.723* 
Academic education    1.490 1.607* 1.625** 
PhD    1.751** 1.901** 1.989*** 
Education with engineering 
specialisation    0.733** 0.740** 0.791* 
Mother academic    1.000 0.978 0.971 
Father academic    0.912 0.890 0.888 

Personality       
Positive risk attitude     1.428*** 1.453*** 
Big 5 extraversion     0.995 0.995 
Big 5 neuroticism     1.006 1.006 
Big 5 openness to new ideas     1.008** 1.009** 
Big 5 agreeableness     0.996 0.997 
Big 5 conscientiousness     0.990** 0.988** 

Work environment first patent       
Generalist work experience      1.555*** 
Applied R&D      0.667* 
Basic R&D      1.014 
Intensive R&D work      1.557*** 
Applicant size 25–249      1.254* 
Applicant size 250–999      1.343** 
Applicant size 1000+      1.305 
Applicant university or public research 
institute      0.485** 
Applicant individual      0.337*** 
Number of co-inventors 1      1.055 
Number of co-inventors 2–3      0.830 
Number of co-inventors 4+      1.064 

Observations 997 997 997 997 997 997 
Pseudo R2 0.0244 0.0457 0.0710 0.130 0.146 0.202 
Log-Likelihood -1030 -1008 -981.2 -918.7 -901.5 -842.7 

Birth year periods - 5 categories Yes Yes Yes Yes Yes Yes 
Main technology field - 14 categories Yes Yes Yes Yes Yes Yes 
First patent status - 4 categories No No No No No Yes 
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the end of their education (Table A6, columns 3 and 4).17 Again, the alternative indicators show robust 

results.  

Lawson & Sterzi (2014) argue that birth cohort effects may drive the results given differences in the 

share of inventive ideas patented for inventors born later. Therefore, we re-run our regression 

separately for inventors born before and after 1964 and the results are still robust (Table A7). 

Jones (2009; 2010) and Jones & Weinberg (2011) argue that young inventors may have to reduce the 

time they can devote to their inventive activity to obtain the education and training needed to reach 

the frontier of knowledge in their technology field, which is a necessary ingredient for inventive 

activities. Therefore, the maturity of a technology field may be a decisive factor in the speed and 

quality of the first patent. Inventors in technology fields with less accumulated knowledge may have a 

smaller burden of knowledge. In addition, inventions in technology fields in which experimentation is 

more important take more time than inventions in mainly conceptual technology fields. Therefore, 

having a fast or high-quality first patent18 in a field in which experimentation is important or the burden 

of knowledge is high may be a stronger indicator of inventive ability compared with other technology 

fields. Our data give us little information about the importance of experimentation versus theory or 

the amount of accumulated knowledge in the technology field in which the first patent was applied 

for. 

If we assume that factors that allow quick inventive progress also allow early completion of the 

education period, age at education completion may be a good indicator of the burden of knowledge 

and the importance of experimentation. For example, Figure 5 in Jones and Weinberg (2011) shows a 

positive correlation between age at highest education degree and age at great achievements for Nobel 

prize laureates. Based on this hypothesis, we calculate the median age at which the highest education 

grade was obtained for each of the 14 technology fields in which the first patent was applied for. We 

find substantial variation between mechanical elements (25 years) and pharmaceuticals (31 years). 

Next, we determine the correlation between a fast or a high-quality first patent separately for 

inventors in technology fields below and above the median age of 28. We do not find indicators for 

differences between inventors in both of the age at the end of education groups (Table A8). 

We reproduce all productivity estimations using ordinary least squares (OLS) instead of the Poisson 

regressions presented (not shown). The coefficients are similar: for example, a fast (high-quality) first 

 
17 We also find robust results if we use the application of the first patent before the end of the PhD period as an 
indicator for a fast first patent in a subsample of PhDs, compare Dietz & Bozeman (2005). 
18 Jones (2009) explicitly mentioned that the burden of knowledge may either decrease the number of ideas 
and/or their quality (i.e., the “size of ideas”). 
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patent is correlated with a 51% (16%) higher career productivity in an estimation according to the 

specification in Table 2, column 6. 

5 Cumulative Advantage Induced by Early Career Success 
We use estimation equation (2) to test whether high early patenting productivity leads to a stronger 

increase in productivity during period t2 compared with productivity in period t1. There is a significant 

negative correlation between the inventive productivity in t1 and the change between the productivity 

in t1 and t2 (Table 4, column 1). Instead of a positive correlation predicted by the cumulative advantage 

hypothesis, we find a regression to the mean in a random process. In other words, inventors with a 

high productivity during their first patenting period cannot increase their productivity further 

compared with this high level. A high-quality first patent is positively correlated with the difference 

between t1 and t2 (Table 4, columns 2 and 3). However, a fast first patent and both early success 

indicators together are not correlated with the productivity difference in most estimation 

specifications. The sum of the difference effect is negative for all inventor groups. We obtain the same 

results qualitatively for inventive productivity changes measured by the number of citations (Table 5). 

In a robustness test, we explain the level of productivity in t2 (instead of the difference between t1 

and t2) by the level of productivity in t1 (compare equation (7) in DiPrete & Eirich (2008)), 

     𝑌𝑖𝑡2 = 𝛾𝑌𝑖𝑡1 + 𝜖𝑖𝑡1,    (6) 

with 𝛾 = 1 + 𝛽. 

Cumulative advantage predicts a coefficient, 𝛾, that is higher than 1. Our estimated 𝛾 is significantly 

below 1 and does not indicate cumulative advantage. Precocious inventors experience a lower 

regression to the mean (compare Tables A9 and A10). 

Finally, we test whether precocious inventors are offered more resources in t2. Our estimations of 

equation (3) show whether inventors with early patenting success increase the share of R&D activities, 

the number of co-inventors, the size of the employer (measured by number of patents applied for by 

applicant), and the chance to move to another employer voluntarily. For three resource dimensions, 

precocious inventors cannot improve their situation between t1 and t2 compared with inventors 

without early success (Table 6). Only the increase in the size of the employer is moderately stronger 

from t1 to t2 for precocious inventors, although this increase is not a consequence of successful 

inventors changing to larger employers; the increase in employer size is slightly larger for precocious 

inventors who do not change their employer (Table A11, columns 1–3). We conclude that precocious 

inventors frequently stay with their employers and that these employers can increase the number of 

patent applications more than the employers of inventors without an early success.  
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  (1) (2) (3) 
Variables Quantity difference Quantity difference Quantity difference 

Quantity in t1 -0.487*** -0.580*** -0.590*** 

 (0.0265) (0.0393) (0.0422) 
Quantity in t1*fast  0.0679 0.0925 

  (0.0540) (0.0654) 
Quantity in t1*high quality  0.200*** 0.229*** 

  (0.0563) (0.0716) 
Quantity in t1*fast and high quality   -0.0777 

   (0.116) 

High R&D in t2        
Voluntary job move in t2        
Applicant size in t2        
Number of co-inventors in t2        
Observations 1191 1191 1191 
Adjusted R2 0.220 0.227 0.227 

Table 4: Test of cumulative advantage in productivity. Dependent variable: difference in patent quantity between 
t1 and t2. OLS regression. Standard errors are shown in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, 
* p < 0.1. 

Variables Quality difference Quality difference Quality difference 

Quality in t1 -0.735*** -0.717*** -0.769*** 

 (0.0136) (0.0260) (0.0315) 
Quality in t1*fast  -0.00590 0.0878** 

  (0.0274) (0.0420) 
Quality in t1*high quality  -0.0268 0.0641 

  (0.0275) (0.0414) 
Quality in t1*fast and high quality   -0.162*** 

   (0.0552) 

High R&D in t2        
Voluntary job move in t2        
Applicant size in t2        
Number of co-inventors in t2        
Observations 1191 1191 1191 
Adjusted R2 0.712 0.711 0.713 

Table 5: Test of cumulative advantage in productivity. Dependent variable: difference in patent quality between 
t1 and t2. OLS regressions. Standard errors are shown in parentheses. Significance levels: *** p < 0.01, ** p < 
0.05, * p < 0.1.
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Variables High R&D High R&D High R&D 
Applicant 

size  
Applicant 

size  
Applicant 

size  
Voluntary 
job move 

Voluntary 
job move 

Voluntary 
job move 

Co-
inventors 

Co-
inventors 

Co-
inventors 

Fast first patent*t2 -0.179***  -0.179*** 40.00**  39.78** -0.080**  -0.080** 0.004  0.000 

High-quality first patent*t2  -0.018 -0.019  29.73 29.42  -0.011 -0.011  -0.276* -0.276* 

Observations 2250 2250 2250 2384 2384 2384 2384 2384 2384 1981 1981 1981 

R2 0.126 0.089 0.126 0.116 0.114 0.118 0.069 0.063 0.069 0.006 0.010 0.010 

t2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Table 6: Test of cumulative advantage in resources. Dependent variables: four resources dimensions. OLS regressions. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 



 

25 
 

6 Discussion and Conclusion 
Our results reveal that precocious inventors, who are either are extraordinarily fast in applying for 

their first patent or who have a first patent with many citations, have a persistently higher quantitative 

and qualitative patent productivity over their career. These findings are consistent with the results 

reported for academic inventors by Lawson & Sterzi (2014) and Dietz & Bozeman (2005), whereas they 

are different from those of Audio & Gonzalo (2007) that a previous patenting success increases the 

number of patents but not the quality of patents. 

Our results include industrial inventors from a broad range of technology fields and inventors who at 

least for parts of their careers worked in public research institutions or universities. Besides speed and 

quality of the first patent, we also control for the work environment during the period in which the 

first patent is applied for, individual education, family background, personality traits, and willingness 

to take risks. Furthermore, we establish that the speed and quality of the first patent are independent 

predictors of career productivity. 

The literature proposes two interpretations for the positive correlation between early patenting 

success and career productivity: the higher innate ability of inventors with early success and 

cumulative advantage. Our results do not indicate cumulative advantage. First, high productivity 

during the first career years does not lead to a stronger increase in productivity during the remaining 

career. Instead of a productivity boost for successful inventors, we observe a regression to the mean. 

The regression to the mean effect is weaker for precocious inventors. However, there also is no 

cumulative advantage for precocious inventors. Second, inventors with an early patenting success 

cannot attract more resources, such as a voluntary move to possibly larger employers, more time for 

R&D, or more co-inventors.  

Inventors with early success have enjoyed favourable working conditions during their first career years. 

This advantage makes it harder for them to improve their resources later in their career. Precocious 

inventors also profit from an increase in employer size when they do not move to another employer. 

The early patent may be used by the first employer after labour market entry to restrict the transfer 

of knowledge and thereby appropriate the inventor’s idea (Kim & Marschke, 2005; Melero et al., 2020). 

Although the precocious inventor can signal higher inventive productivity to potential alternative 

employers, the poaching risk remains low because the inventor is not allowed to use previous 

knowledge after moving to another employer. Compared with inventors without an early success, 

precocious inventors also enjoy a stronger wage increase during their remaining career than during 

the period in which they applied for their first patent (Table A9).19 This wage increase is comparable 

 
19 Annual gross income is measured in six income brackets in our survey calendar: below €10,000; €10,000–
€29,999; €30,000–49,999; €50,000–69,999; 70,000–99,999; and €100,000 or more. 
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for inventors who stay with the employer that applied for the first patent and inventors who change 

their employer. Our interpretation of these patterns is that employers share their monopoly rents 

derived from the early invention with their precocious inventors (Toivanen & Väänänen, 2012). Thus, 

precocious inventors stay with their employers because they experience a good resource situation 

early on and participate financially in their early success. A final consequence of the good fit between 

the first employer and the precocious inventor is their lower unemployment risk during t2 than during 

t1 compared with inventors without early success (Table A11). 

Our study has valuable implications for management and inventors. First, our results support the 

interpretation of inventive productivity being characterised by a variation-selection process 

(Simonton, 2003). Useful and useless variations seem to be randomly distributed within individual 

careers and there is no indication of cumulative advantage. Thus, productivity differences between 

inventors are independent of age and experience. The most prolific inventors at the beginning of their 

career continue to show higher productivity for the rest of their career (Huber, 1998). Second, 

information about early patenting success can reduce uncertainty about future inventor productivity 

for employers (Long, 2002; Spence, 1976). Third, employers that have hired precocious inventors 

before their early patenting success have a fair chance of retaining them, albeit at the cost of wage 

increases. 

Identifying, attracting, and retaining precocious inventors can be a decisive advantage for employers 

that rely on innovations. According to Lotka (1926), only a tiny share of inventors achieves a high 

inventive productivity during the career; therefore, the distribution of inventive success is highly 

unequal (Price, 1965; Levine, 1986; Huber, 2002; Narin & Breitzman, 1995; Sapsalis et al., 2006; 

Toivanen & Väänänen, 2012, 2016; Lawson & Sterzi, 2014). The few truly prolific inventors not only 

contribute to corporate success by producing more patents, but also the average economic value of 

their patents is higher (Almeida & Kogut, 1997; Gay et al., 2010). In addition, prolific inventors are a 

source of ideas and inspiration for their peers, colleagues, and network members, and they can act as 

knowledge integrators between communities and institutional contexts (Subramaniana et al., 2013). 

Their knowledge-enabling function has a positive external effect on the overall innovativeness of their 

employers (Zucker et al., 1998, 2002; Gambardella et al., 2008; Bercovitz & Feldman, 2008; Azoulay et 

al., 2010).  

Information about patent data is traditionally public and easily accessible (Hoisl, 2007a; Toivanen & 

Väänänen, 2012). Employers interested in prolific and precocious inventors in their technical field of 

interest can consult the European Patent Register provided by the European Patent Office or the 

Patent Full-Text and Image Database provided by the United States Patent and Trademark Office. 

Therefore, we can assume that inventors of high-quality patents do not need web-based social 

networks to gain visibility, and the visibility of inventors should have hardly increased recently, 
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although social networks have generally reduced search costs and increased the job chances for able 

employees (Dato et al., 2020).  

Further research is needed to investigate the potential productivity channels of inventors with an early 

patenting success. This paper establishes the outstanding importance of a fast and high-quality first 

patent. However, we do not examine the predictive quality of the characteristics of the second and 

further patents for future inventive productivity. We focus on the first patent because our sample size 

is decreased dramatically if we restrict it to inventors with more than two, or three, or even more 

patents. Future studies with access to a larger pool of prolific inventors may analyse the additional 

information value of including the characteristics of more than the first patent. In tentative 

regressions, we find evidence for a decrease in the predictive value for future productivity when we 

include more than the first patent. If we include not only the first patent but all patents in the year the 

first patent was applied for and the year after, the coefficient of the highest quality quartile on patent 

quality during the remaining career decreases from 66% in Table 3, column 6 to 51%. When we 

increase t1 to 3, 4, and 5 years, the coefficients for patent quality in t2 decrease to 47%, 39%, and 30%, 

respectively (all coefficients are significant at the 5% level). 

Although we include more explanatory variables on individual and employer characteristics than most 

previous papers on inventive productivity, potential employers may have additional ability indicators 

when they assess job applicants or try to poach inventors from their competitors. Potential information 

sources are education marks in addition to education grades or the prestige of the educational 

institution (DiPrete & Eirich, 2008). This additional information may also contribute to the open 

questions of why precocious inventors enjoy a productivity-enhancing work environment before their 

first success and why the matching quality between precocious inventors and their first employers is 

so high that few of them voluntarily change their employer during their later career compared with 

their first career years. Thus, future work may focus on the labour market entry of inventors and the 

question of what the drivers of employee selection are and the match between inventors and their 

first employer.  



 

28 
 

Appendix 
 

Number of periods after the  
first patent period 

Frequency Percent Cumulative 

1 349 29.78 29.78 

2 411 35.07 64.85 

3 249 21.25 86.09 

4 117 9.98 96.08 

5 40 3.41 99.49 

6 6 0.51 100.00 

Total 1240 100.00  

Table A1: Number of periods observed after the first patent. 

 

 

 

 

 

 

 Patent 
quantity 

Patent 
quality 

Deviance goodness of fit 443.8 750.5 
Prob > chi (950) 1.0 1.0 

Pearson goodness of fit 561.7 1078.6 
Prob > chi (950) 1.0 1.0 
Table A2: Poisson distribution goodness of fit tests for inventive 
productivity (n = 1240). 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

(1) Patent quantity 1.000                
(2) Patent quality  0.660*** 1.000               
(3) High-quality first 
patent  

0.085*** 0.136*** 1.000              

(4) Fast first patent  0.288*** 0.229*** -0.003 1.000             
(5) Male 0.038 0.029 -0.018 -0.034 1.000            
(6) Academic education -

0.133*** 
-

0.122*** 
-0.058** -0.071** 0.074** 1.000           

(7) PhD 
0.169*** 0.152*** 0.064** 0.169*** -0.050* 

-
0.848*** 

1.000          

(8) Education with 
engineering 
specialization 

-0.068** 
-

0.140*** 
-0.039 -0.014 0.128*** 0.396*** 

-
0.399*** 

1.000         

(9) Academic mother  
0.052* -0.008 -0.032 0.143*** -0.028 

-
0.080*** 

0.129*** -0.005 1.000        

(10) Academic father  -0.000 -0.016 0.024 0.118*** -0.054* 0.014 0.039 0.038 0.274*** 1.000       
(11) Positive risk attitude 0.064** 0.093*** 0.010 -0.020 0.050* -0.025 0.006 -0.038 -0.042 -0.013 1.000      
(12) Big 5 extraversion 0.013 0.023 0.000 -0.001 -0.003 -0.057* 0.024 -0.002 -0.008 -0.002 0.197*** 1.000     
(13) Big 5 neuroticism 

-0.062** -0.019 -0.011 -0.065** -0.039 0.033 -0.033 0.019 0.059* 0.014 
-

0.099*** 
-0.070** 1.000    

(14) Big 5 openness to 
new ideas 

0.063** 0.056* -0.019 -0.037 0.064** -0.065** 0.033 -0.012 0.019 0.058* 0.266*** 0.623*** 0.107*** 1.000   

(15) Big 5 agreeableness -0.003 0.005 -0.017 0.006 0.032 0.048 -0.051* 0.053* 0.020 0.056* 0.149*** 0.500*** -0.027 0.429*** 1.000  
(16) Big 5 
conscientiousness 

-0.058* -0.065** 0.032 -0.040 -0.003 -0.011 0.011 0.012 0.000 0.009 0.023 0.278*** 0.064** 0.298*** 0.315*** 1.000 

Table A3a: Correlation table (n = 1240). 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) 

(1) Patent quantity 1.000                   
(2) Patent quality  0.660*** 1.000                  
(3) High-quality first 
patent 

0.085*** 0.136*** 1.000               
  

(4) Fast first patent  0.288*** 0.229*** -0.003 1.000                
(5) Generalist work 
experience 

0.070** 0.101*** 0.071** 0.050* 1.000             
  

(6) Applied R&D 
-0.053* 

-
0.085*** 

0.063** 
-

0.124*** 
0.028 1.000            

  

(7) Basic R&D 
0.122*** 0.130*** 0.005 0.162*** 0.074** 

-
0.418*** 

1.000           
  

(8) Intensive R&D work 0.170*** 0.129*** 0.074*** 0.156*** 0.175*** 0.207*** 0.120*** 1.000            
(9) Applicant size 25–249 0.010 -0.012 -0.013 -0.018 0.003 -0.018 -0.006 0.016 1.000           
(10) Applicant size 250–
999 

0.086*** 0.067** 0.027 0.029 0.036 -0.022 -0.008 0.070** 
-

0.250*** 
1.000        

  

(11) Applicant size 1000+ 
0.046 0.010 0.082*** 0.069** -0.006 0.033 -0.003 0.032 

-
0.237*** 

-
0.150*** 

1.000       
  

(12) Applicant 
university/public 
research institute  

-0.037 -0.050* -0.067** 0.052* -0.000 0.016 0.029 0.044 0.081*** 0.062** -0.053* 1.000      
  

(13) Applicant individual  -0.050* -0.037 -0.010 0.029 -0.012 -0.025 0.019 -0.062** -0.056** -0.045 -0.043 -0.023 1.000       
(14) Number of co-
inventors 1 

-0.006 0.012 
-

0.078*** 
-0.004 0.008 0.005 -0.009 -0.052* -0.005 -0.045 -0.048* -0.023 -0.040 1.000    

  

(15) Number of co-
inventors 2–3 

-0.010 -0.040 0.011 -0.008 -0.032 0.027 -0.061** 0.041 0.017 0.034 0.008 0.032 -0.050* 
-

0.418*** 
1.000   

  

(16) Number of co-
inventors 4+ 

0.044 0.063** 0.096*** 0.063** 0.036 -0.036 0.096*** 0.053* 0.048* 0.006 0.066** 0.004 -0.005 
-

0.310*** 
-

0.500*** 
1.000  

  

(17) First patent is 
granted  

0.026 0.044 0.091*** 0.035 0.003 0.055* -0.053* 0.046 -0.011 0.050* 
-

0.095*** 
-0.009 -0.024 0.028 0.024 -0.051* 1.000 

  

(18) First patent is 
pending 

-0.069** 
-

0.119*** 
-0.056** 

-
0.116*** 

-0.014 -0.009 0.026 
-

0.088*** 
0.016 0.012 0.048* 0.064** -0.007 -0.025 -0.015 0.057** 

-
0.637*** 

1.000 
 

(19) First patent is 
withdrawn 

-0.015 -0.010 -0.018 0.003 0.021 -0.071** 0.013 0.021 -0.001 -0.009 0.015 -0.025 -0.014 -0.028 0.065** -0.013 
-

0.149*** 
-0.063** 

1.000 

Table A3b: Correlation table (n = 1240). 
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 No early success  Fast first patent High-quality first 
patent 

Fast and high-quality first 
patent  

High R&D 0.59 0.83 0.72 0.83 
Applicant size 244.42 376.00 399.48 461.78 
Voluntary job 
move 

0.18 0.32 0.22 0.35 

Number of co-
inventors 

3.52 3.77 3.94 4.07 

Observations 583 368 350 110 

Table A4: Average resources in t1 of inventors with and without early success. Significance levels: *** p < 

0.01, ** p < 0.05, * p < 0.1 

 
 

 (1) (2) (3) (4) 

Variables 

Patent  
quantity  

(fractional counts) 

Patent  
quality  

(fractional counts) 

Patent  
quality  

(10 years) 

Patent  
quality  

(by patent) 

High-quality first patent  1.719*** 1.676*** 1.693*** 2.414*** 

 (0.145) (0.201) (0.189) (0.142) 

Fast first patent  1.614*** 1.710*** 1.791*** 1.152** 

 (0.161) (0.229) (0.227) (0.0811) 

Observations 997 997 997 997 

Pseudo R2 0.131 0.147 0.218 0.103 

Likelihood -755.9 -387.9 -985.6 -1058 

Control individual background Yes Yes Yes Yes 

Control personality Yes Yes Yes Yes 

Control work environment first patent Yes Yes Yes Yes 

Birth year periods - 5 categories Yes Yes Yes Yes 

First patent status - 4 categories Yes Yes Yes Yes 

Main technology field - 14 categories Yes Yes Yes Yes 

Table A5: Productivity estimations with alternative dependent variables. Poisson regressions. Table shows 
incidence rate ratios. Heteroscedasticity robust standard errors are shown in parentheses. Significance levels: 
*** p < 0.01, ** p < 0.05, * p < 0.1. 
  

 

 (1) (2) (3) (4) 

VARIABLES 
Patent  

quantity 
Patent  
quality  

Patent  
quantity 

Patent  
quality  

High-quality first patent (5 years)   1.161** 1.585*** 

   (0.0844) (0.182) 
High-quality first patent (10 years) 1.340*** 1.844***   

 (0.102) (0.220)   
Fast first patent  1.580*** 1.759***   

 (0.125) (0.231)   
First patent applied for before first job   2.724*** 2.345*** 
   (0.706) (0.688) 

Observations 997 997 997 997 
Pseudeo R2 0.115 0.207 0.113 0.193 
Likelihood -865.6 -837.9 -867.4 -852 

Control individual background Yes Yes Yes Yes 
Control personality Yes Yes Yes Yes 
Control environment first patent Yes Yes Yes Yes 
First patent status - 4 categories Yes Yes Yes Yes 
Birth year periods - 5 categories Yes Yes Yes Yes 
Main technology field - 14 categories Yes Yes Yes Yes 

Table A6: Productivity estimations with alternative early patenting success measures. Poisson regressions. Table 
shows incidence rate ratios. Robust standard errors are shown in parentheses. Significance levels: *** p < 0.01, 
** p < 0.05, * p < 0.1. 
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Table A7: Productivity estimations, results for inventors born before and after 1964. Poisson regressions. Table 
shows incidence rate ratios. Robust standard errors are shown in parentheses. Significance levels: *** p < 0.01, 
** p < 0.05, * p < 0.1. 

 

 

  (1)  (2) (3) (4) 

Variables 

Below median age of highest education in 
technology field 

Above median age of highest education in 
technology field 

Patent quantity Patent quality Patent quantity Patent quality 

High-quality first patent  1.135 1.661*** 1.207* 1.680***  
(0.114) (0.232) (0.124) (0.280) 

Fast first patent  1.696*** 1.946*** 1.562*** 1.740*** 

 (0.196) (0.326) (0.163) (0.323)      
Observations 554 554 443 443 
Pseudo R2 0.118 0.211 0.135 0.250 
Loglikelihood -483.8 -406.9 -371.6 -401.3 

Control individual background Yes Yes Yes Yes 
Control personality Yes Yes Yes Yes 
Control environment first 
patent Yes Yes Yes Yes 
First patent status - 4 
categories Yes Yes Yes Yes 
Birth year periods - 5 
categories Yes Yes Yes Yes 
Main technology field - 14 
categories Yes Yes Yes Yes 

Table A8: Productivity estimations, results for inventors by the median age at the highest educational degree 
in technology field of first patent. Poisson regressions. Table shows incidence rate ratios. Robust standard 
errors are shown in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 

  

  (1) (2) (3) (4) 

Variables 
Born in 1964 and after Born before 1964 

Patent quantity Patent quality Patent quantity Patent quality  

High-quality first patent  1.140 1.585*** 1.285** 1.812***  
(0.106) (0.230) (0.133) (0.265) 

Fast first patent  1.474*** 1.663*** 1.838*** 2.357*** 

 (0.155) (0.327) (0.203) (0.351)      
Observations 542 542 455 455 
Pseudo R2 0.136 0.268 0.103 0.209 
Loglikelihood -510 -447.7 -340 -351.1 

Control individual background Yes Yes Yes Yes 
Control personality Yes Yes Yes Yes 
Control environment first patent Yes Yes Yes Yes 
First patent status - 4 categories Yes Yes Yes Yes 
Birth year periods - 5 categories Yes Yes Yes Yes 
Main technology field - 14 categories Yes Yes Yes Yes 
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Variables Quantity Quantity Quantity 

Quantity in t1 0.513*** 0.420*** 0.410*** 

 (0.0265) (0.0393) (0.0422) 
Quantity in t1*fast first patent  

 
0.0679 0.0925 

 
 

(0.0540) (0.0654) 
Quantity in t1*high-quality first patent  

 
0.200*** 0.229*** 

 
 

(0.0563) (0.0716) 
Quantity in t1*fast/high-quality first patent  

  
-0.0777 

 
  

(0.116) 

Observations 1191 1191 1191 
Adjusted R2 0.238 0.246 0.245 

Table A9: Test of cumulative advantage in productivity. Dependent variable: number of patents in t2. OLS 
regression. Standard errors are shown in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 

Variables Quality Quality Quality 

Quality in t1 0.265*** 0.283*** 0.231*** 

 (0.0136) (0.0260) (0.0315) 
Quality in t1*fast first patent  

 
-0.00590 0.0878** 

 
 

(0.0274) (0.0420) 
Quality in t1*high-quality first patent  

 
-0.0268 0.0641 

 
 

(0.0275) (0.0414) 
Quality in t1*fast/high-quality first patent  

  
-0.162*** 

 
  

(0.0552) 

Observations 1191 1191 1191 
Adjusted R2 0.242 0.241 0.246 

Table A10: Test of cumulative advantage in productivity. Dependent variable: number of citations in t2. OLS 
regression. Standard errors are shown in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 
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 (1) (2) (3) (4) (5) (6) 

Variables 

Applicant 
size  

for stayers 

Applicant 
size  

for stayers 

Applicant  
size  

for stayers 

Salary for 
stayers 

Salary for 
stayers 

Salary for 
stayers 

Fast*t2 47.29*  47.40* 0.303***  0.303*** 

High quality*t2  30.16 30.33  -0.00791 0.00550 

Observations 1572 1572 1572 1182 1182 1182 

R2 0.103 0.101 0.105 0.644 0.624 0.644 

Panel FE FE FE FE FE FE 

     

 (7) (8) (9) (10) (11) (12) 

Variables Salary Salary Salary Unemployed Unemployed Unemployed 

Fast*t2 0.295***  0.295*** -0.0356***  -0.036*** 

High quality*t2  -0.016 -0.013  -0.008 -0.008 

Observations 1856 1856 1856 2308 2308 2308 

R2 0.656 0.637 0.656 0.019 0.004 0.020 

Panel FE FE FE FE FE FE 

Table A11: Test of cumulative advantage in resource changes between t1 and t2. Difference-in-differences. 
Observations vary because not all survey questions were answered by all inventors. Robust standard errors are 
shown in parentheses. FE = individual fixed effects. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 

Figure A1: Distribution of dependent variables (sample of inventors with at least two patents, n = 1240). 
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