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Abstract: Recent empirical evidence has shown that firm’s innovation behavior exhibits 
high persistency but not much is known about potential contingencies affecting the degree 
of persistence. This paper focuses on the role of the local knowledge environment and asks 
how local knowledge spillovers affect firms' innovation persistence. The empirical analysis 
draws upon a representative panel data set of firms in Germany from 2002-2016, 
complemented by detailed geographic information of patent activity over discrete distances 
to proxy local knowledge spillovers. Based on correlated random effects probit models that 
control for state dependence, unobserved individual heterogeneity and endogenous initial 
conditions, our results corroborate former evidence that persistency in innovation is driven 
by true state dependence. More importantly, we find that the local patenting activity 
positively moderates firms´ degree of persistency in innovation behavior. This is a novel 
firm-level mechanism that can explain the widening of spatial disparities in innovation 
performance. Estimations with different distance bands show that the strength of 
knowledge spillovers that contribute to innovation persistence via true state dependence 
declines rather rapidly with increasing distance. 
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1. Introduction 

Innovation is a one of the main sources of economic growth. As successful innovation 

requires continuous commitment, the persistency of firms' innovation activities has 

attracted increasing attention. As a result, there exists now a quite established literature on 

innovation persistence at the micro level both empirically as well as from a theoretical 

perspective (see, for example, Cefis and Orsenigo, 2001; Peters, 2009; Martínez-Ros and 

Labeaga, 2009; Raymond et al., 2010 amongst others). This literature demonstrates that 

firms exhibit strong persistency in their innovation behavior.  

Persistence in innovation can result from true state dependence (Heckman, 1981) when 

there is a causal relationship with the decision to innovate in one period increasing the 

propensity to innovate also in the following period. From a theoretical perspective, true 

state dependence can be linked to (1) fixed costs (as entry barrier) and sunk costs (as exit 

barrier) (Sutton, 1991), (2) 'success breeds success' (Flaig and Stadler, 1994), (3) 

accumulation of knowledge and “learning by doing” (Geroski et al., 1997), and (4) market 

structures that either stimulate or discourage innovation (Woerter, 2014). Persistence in 

innovation may also result from certain firm-specific characteristics such as firm size or 

managerial skills and attitudes that are positively associated with a higher or lower 

probability of innovating. As those characteristics are usually highly persistent over time, 

this will also lead to observed persistence in innovation behavior, and thus spurious state 

dependence may be identified (Peters, 2009). It is hence important to control for such 

observable and unobservable firm characteristics. The literature has found compelling 

evidence for true state dependence and has also analyzed several firm internal drivers of 

persistence. 

However, little attention has been paid to the role of locational factors, and local 

knowledge spillovers in particular. In fact, the local knowledge environment of a firm can 

provide incentives to take-up, continue or discontinue innovation activities. For example, 

locally available knowledge can reduce entry costs and sunk costs of innovation activities 

which could result in higher entry and exit, greater fluctuations and thus lower persistence. 

But locally available knowledge can also facilitate learning-by-doing by providing easy and 

cheap access to complementary resources required for a firm's innovation activity. All this 

could increase innovation persistence. This paper is among the first to provide evidence for 

the causal effect of local knowledge spillovers on persistence that derives from true state 

dependence of innovation activities, i.e. we focus on how the local knowledge environment 
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moderates true state dependence. We employ a representative, comprehensive panel data 

set of firms in Germany, covering a 15-year period and estimate correlated random effects 

probit models. The model accounts for state dependence, unobserved heterogeneity and 

initial conditions and allows unobserved factors to be correlated with the observables. This 

is important because unobserved factors could be correlated with firms’ initial location 

decision. For example, firms with unobserved characteristics that are positively linked to 

innovate may be attracted to regions that offer better conditions for innovating.  

The estimation results show that the local patenting activity significantly moderates firms´ 

persistence in innovation activities. Estimations with different distance bands furthermore 

show that the role of knowledge spillovers for innovation persistence declines with 

increasing distance. These patterns are observed for both manufacturing and service firms. 

However, in services, the knowledge spillovers that contribute to innovation persistence 

are spatially more constrained than in manufacturing.  

Our research contributes to the debate about innovation persistence in several ways. First, 

we contribute towards the literature on innovation dynamics and the drivers and 

mechanism of innovation persistence by showing that true state dependence is actually 

moderated by firms’ external knowledge environment. Previous research in this field has 

almost exclusively focused on intra-firm drivers of persistence. Second, the findings in this 

paper also contributes to the literature on knowledge spillovers by showing that spillovers 

affect innovation persistence. Furthermore, we use a geographic information system (GIS) 

to calculate patents over discrete distances based on postal code information to proxy 

knowledge spillovers. Previous research on knowledge spillovers has mostly relied on larger 

administrative regions. Far less is still known about the role of knowledge at finer scales of 

geographical resolution. To the best of our knowledge, this is the first empirical analysis 

that examines the role of local knowledge spillovers for innovation persistence using a 

micro-geographic distance-based approach. Finally, our research is also of interest to the 

literature on regional heterogeneity in innovation performance. We show that firms in areas 

with higher patenting activity – i.e. knowledge-rich areas – show greater persistence. This is 

a firm-level mechanism that can explain the growing concentration of innovation and the 

widening of spatial disparities in innovation performance that has recently be observed 

(Castellani, 2017; Rammer and Schubert, 2018; Kerr and Robert-Nicoud, 2019). Our results 

are also relevant to regional policy. Since stopping innovation activities may harm firm's 

long-term competitiveness, low innovation persistence may further widen reginal economic 

disparities. Recent research has also shown that innovation contributes to the resilience of 
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regions to economic shocks (Bristow and Healy, 2018). It is therefore important to gain a 

better understanding of the factors that contribute to innovation persistence not only from 

the firm's perspective but also for designing policies.  

The remainder of this paper is organized as follows. Section 2 discusses the role of local 

knowledge spillovers for innovation persistence of firms. Section 3 describes the data and 

presents some descriptive results. Section 4 presents our estimation approach. The results 

and are presented in Section 5. Section 6 offers conclusions. 

2. Local Knowledge Spillovers and Innovation Persistence 

In analyzing the role of local knowledge spillovers for innovation persistence, we link two 

strands of literature that have largely developed separately. On the one hand, there is a 

huge body of theoretical and empirical literature on the determinants of innovation 

persistence in firms (see Le Bas and Scellato, 2014; and Crespi and Scellato, 2015 for a 

summary of main findings). On the other hand, a similarly extensive body of research deals 

with local knowledge spillovers in innovation and their role for spatial concentration of 

innovation activities (see Audretsch and Feldmann, 2004; Carlino and Kerr, 2015; 

Audretsch and Feldman, 1996; Feldman and Audretsch, 1999; Simmie, 2002; Thompson, 

2006). There are few works, however, that have combined the two strands and have looked 

at the role of local knowledge spillovers for the persistence of a firm's innovation activity 

(Tavassoli and Karlsson, 2018, is a recent exception). In this paper, we bring together these 

two strands.  

Theoretical explanations of innovation persistence stress four main mechanisms that keep 

firms in or out of innovation activities. First, fixed costs of innovation represent an entry 

barrier to innovation, especially for small firms with fewer resources at their disposal. Fixed 

costs include laboratory and equipment for research and development (R&D) as well as 

hiring specialized staff for performing innovation activities which cannot be used in other 

functional areas of a firm. In addition, part of this initial investment constitutes sunk costs 

and may prevent firms from entering but also from stopping innovation activities once 

started (Sutton, 1991; Máñez et al., 2009; Peters, 2009). Secondly, successful innovation 

generates extra profits that can be used to finance new innovation activities ('success breeds 

success'; Flaig and Stadler, 1994). As innovative firms on average are more successful than 

non-innovative ones (Geroski et al., 1993; Leiponen, 2000; Cefis and Ciccarelli, 2005; Love 

et al., 2009), past innovation provides the financial basis for future innovation. Thirdly, 
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innovation activities are subject to “learning-by-doing”. Firms learn by innovating, and the 

knowledge they acquire from past innovation can contribute to new innovation (Geroski et 

al., 1997). At the same time, firms without innovation activity in the past will have to invest 

substantially into acquiring the knowledge needed to set up and run innovation activities, 

which will prevent many firms from starting innovation. Finally, innovation changes 

competition in markets, for example, by reducing price competition, shifting user 

preferences towards quality characteristics of products, or squeezing out non-innovative 

firms (Woerter, 2014). These changes in market structure may stimulate further innovation. 

In the same vein, in markets that primarily consist of non-innovative suppliers, market 

structures will provide little incentives to engage in innovation, e.g. by offering small if any 

rents for innovators due to high price competition or a lack of users' willingness to pay for 

high-quality products. 

A factor that has received little attention in research on innovation persistency so far is a 

firm’s local knowledge environment. We argue that the availability or absence of local 

knowledge spillovers changes the way the four aforementioned mechanisms work. Local 

knowledge spillovers may hence be regarded as a moderator that strengthens or softens the 

factors leading to innovation persistence. In the following, we discuss the likely impacts of 

a firm's local knowledge environment for the four main mechanisms that lead to 

innovation persistency.  

With respect to entry and exit barriers to innovation resulting from fixed and sunk cost of 

innovation, a large pool of local knowledge may reduce these costs leading to more entry 

and exit. Proximity to other knowledge sources reduces transaction costs and makes it 

easier to find suitable cooperation partners. This lowers the cost of firms for substituting 

internal knowledge resources by external ones, e.g. by outsourcing of certain non-strategic 

activities in the innovation process. It also allows them to reduce in-house capacities for 

innovation (e.g. in terms of the size of the R&D department) and rely more on external 

knowledge. Having more innovation activities in the local environment may hence reduce 

innovation persistency as it eases entry to and exit from innovation.  

Concerning the 'success breeds success' mechanism for persistency, a large pool of local 

knowledge will rather increase persistency. As firms depend on external inputs to 

successfully innovate, both in terms of receiving ideas for innovation and accessing 

knowledge to timely and efficiently complete innovation projects, a firm's local knowledge 

environment can be an important determinant for innovation success (Leiponen and 
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Helfat, 2011; Roper et al., 2017). One may expect firms in a thick knowledge environment 

to more easily tap into the knowledge necessary to succeed in their innovation efforts and 

hence achieve better innovation results. This can be a 'success breeds success' mechanism 

of innovation persistency at the regional level, as successful innovation of one firm 

supports successful innovation of others. At the same time, firms located in a region with 

little external knowledge in their vicinity will find it more difficult to successfully innovate 

and may hence refrain from innovation activity, contributing to a high persistency of non-

innovative firms.  

A large pool of local knowledge will also facilitate learning in firms. Regular and face-to-

face interaction with knowledge sources (other firms, universities, research institutes) eases 

the identification and absorption of knowledge relevant for a firm's innovation activities 

(Cohen and Levinthal, 1990). A common background among actors that engage in 

knowledge exchange helps to build trust and a mutual understanding of the challenges 

faced in innovation activities, which can be crucial for identifying the right external 

knowledge needed to advance a firm's innovation efforts. 

A concentration of knowledge sources and innovation activities within a region can also 

contribute to the emergence of a regional eco-system of innovation that shapes the market 

structures in which the region's innovative firms operate (Oksanen and Hautamäki, 2014; 

Foray, 2014). If market structures for all innovative firms in a region evolve towards a 

similar direction by strengthening the role of innovation for competition, this will provide 

additional incentives to stay on an innovation track. 

In summary, a large stock of knowledge in a firm's region may result in higher innovation 

activities and a higher innovation persistency as knowledge thickness contributes to more 

successful innovations, facilitates learning from others' innovations, and changes market 

structures towards a higher importance of innovation as a competitive factor. At the same 

time, a lack of regional knowledge sources relevant to innovation in firms may work in the 

other direction and deter firms from innovating in a persistent way. However, there might 

also be a counteracting mechanism if a large stock of innovation-relevant knowledge in a 

region decreases fixed and sunk costs of innovation and hence reduces barriers to entry or 

exit innovation activities. 

A critical issue when analyzing the role of a firm's knowledge environment is the spatial 

scope of knowledge spillovers. Empirical studies of the distance decay of knowledge for 

innovation found quite different results. Wallsten (2001) studied participation in the Small 
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Business Innovation Research program in the U.S. and found that firms are more likely to 

receive a grant if their neighbors within a 1/10 of a mile received a grant. The effect rapidly 

diminishes with increasing distance and disappears by 5 miles. Rammer et al. (2019) found 

that the impact of local public knowledge sources (universities, research institutes) on 

firms' innovation in an urban environment diminishes already after some 100 meters. 

These results suggest highly localized knowledge spillovers at small geographical scales (see 

also Rosenthal and Strange, 2003; Murata et al. 2014). Buzard et al. (2020) used patent 

citation data for American R&D labs and showed that knowledge spillovers are strongest 

over distances up to 5 miles. Funke and Niebuhr (2005) analyzed knowledge spillovers 

based on the relationship between regional productivity and R&D activity in West German 

planning regions. They found that the intensity of spillovers declines by 50% over a 23km 

distance. 

At the same time, the literature on the geography of knowledge flows stresses the 

importance of inter-regional and international knowledge (Bathelt et al. 2004; Gertler and 

Levitte, 2005). Niosi and Yhegu (2005) argue in the case of aerospace clusters that 

knowledge spillovers are much less spatially constrained. Bottazzi and Peri (2003) analyzed 

the impact of R&D spending on the output of new ideas in European Regions and found 

spillovers that extend within a distance of 300km. Nevertheless, as Bathelt et al. (2004) 

argue, the local learning process and the channels to access external knowledge cannot be 

viewed separately. Although codified knowledge is in principle not proximity-constrained, 

it usually needs to be used together with locally transferred tacit knowledge to create new 

knowledge. Thus, the use of global or non-local knowledge is closely linked to the use of 

local knowledge (Bathelt and Cohendet, 2014). 

Regarding spatial differences in innovation persistence, the study by Cefis and Orsenigo 

(2001) highlights that the level of innovation persistence is country-specific which could be 

due to different institutional set ups, different technological specialization and different 

costs for conducting innovation activities in place. Filippetti and Archibugi (2011) also 

highlight country differences in the degree to which firms have decreased their innovation 

expenditure in response to the 2008 economic crisis. They point towards differences in the 

National Systems of Innovation as factors shaping the innovation behavior of firms in 

response to the crisis. We argue that beyond country differences there can also be 

important local and regional heterogeneity in innovation persistence within countries given 

the role of localized knowledge and knowledge spillovers.  
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There is some recent empirical evidence that points in this direction. Holl and Rama (2016) 

found, for example, that firms located in the Spanish Basque country were more likely to 

persist in their innovative activities during the 2008 crisis than firms located in other 

regions like Catalonia or Madrid. This regional effect is attributed to the relative strength of 

the Basque Regional Innovation System. Cruz Castro et al. (2018) further investigate firms’ 

probability of abandoning in-house R&D in Spain since the onset of the economic crisis 

and also show significant regional heterogeneity. Using a sample of Italian manufacturing 

firms, Antonelli et al. (2013) find a significant role of the reginal context for TFP 

persistence. They argue that this reflects innovation persistence. 

The most closely related paper to our research is Tavassoli and Karlsson (2018). They use 

data of 574 firms from 5 waves of the Community Innovation Survey in Sweden between 

2002 and 2012. They apply a dynamic random effects probit model to analyze various 

regional characteristics and how they affect persistency in the introduction of product, 

process, organizational and marketing innovation. In order to analyze regional differences, 

they split the sample of firms in three categories based on tercile values for total regional 

employment size, regional employment in knowledge-intensive service sectors, and total 

number of innovative firms in the functional region. Their results show that firms in 

regions with thicker labour markets, with more knowledge-intensive service providers, and 

with a greater number of innovative firms tend to show a higher probability of being 

persistent innovators. This suggests that the regional context can indeed affect innovation 

persistence at the firm level. Nevertheless, their findings regarding the role of location for 

innovation persistence are not completely conclusive as in some cases persistence is nearly 

of the same magnitude in the lowest tercile.  

How the local environment of a firm moderates its innovation persistence has not yet been 

sufficiently explored. Particularly, to date there is yet no consistent evidence on the role of 

local knowledge spillovers on innovation persistence. In this paper, we use micro-

geographic data and adopt a distance-based approach to unveil processes that would 

otherwise be hidden at larger levels of spatial aggregation. If the relevant knowledge 

spillovers operate at fine spatial scales, studies based on relatively large fixed geographic 

areas or administrative boundaries are likely to underestimate the role of knowledge 

spillovers. Moreover, we implement an empirical strategy aimed at providing evidence on 

the causal effect of the local knowledge environment on persistence in innovation 

activities. 
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3. Data and Descriptive Results 

We use data from the Mannheim Innovation Panel (MIP) which provides information 

regarding the innovation behavior of German firms. The MIP data set is based on the 

annual German Innovation Survey carried out by the Centre for European Economic 

Research (ZEW) in Mannheim on behalf of the German federal government (Peters and 

Rammer, 2013). Every second year it is the German contribution to the European-wide 

Community Innovation Surveys (CIS).  

We use MIP data for the period 2002-2016 which provides us with panel information for 

about 29,611 different firms. However, since participation in the MIP survey is voluntary, 

many firms did not necessarily respond in consecutive years; a requirement for the 

empirical analysis. Moreover, not all firms always respond to all questions. Thus, we end up 

with an unbalanced panel of nearly 15,266 different firms (8,373 manufacturing firms and 

7,213 service sector firms, among them 320 firms switching industries over the time 

period) and 66,479 observations for our empirical analysis. The average number of 

consecutive observations per firm of is 4.4 years. About 49% of our sample firms remain 3 

and more consecutive years in the sample and 21% more than 6 consecutive years. After 

accounting for the initial observation and taking lags, the econometric analysis makes use 

of 45,898 observations. Table A1 to A3 in the Appendix provide information on the 

characteristics of the original MIP sample and our estimation sample regarding their 

sectoral distribution, their size distribution and the observed innovation behavior. Overall, 

our estimation sample reflects the original sample characteristics quite well and does not 

raise any obvious selectivity concerns. 

Following Peters (2009), this paper focuses on innovation input. The dependent variable 

innovation, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 , equals 1 if firm 𝑖𝑖 is engaged in innovation activities in year 𝑡𝑡, measured 

here as having positive innovation expenditure in year 𝑡𝑡. The MIP and CIS also collect 

output-related information, specifically the introduction of new products and processes. 

However, these variables refer to a three-year period and thus cause overlapping in the 

dependent variable in the panel data setting that would bias estimates for innovation 

persistence (Peters, 2009). In contrast, the information on innovation expenditure is 

available on a yearly basis. Other papers that have focused on input rather than innovation 

output variables are, for example, Máñez et al. (2009) and Arqué-Castells (2013). As argued 

in Arqué-Castells (2013) input variables reflect innovation effort rather than only the 
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success in innovation and policies are usually geared towards the input side of the 

innovation process. 

To examine the importance of local knowledge spillovers for innovation persistence, we 

use patent data. Although we view knowledge spillovers in a wider sense than just 

patentable technological knowledge, we have to accept that directly observing all kinds of 

knowledge flows is notoriously difficult, particularly if one wants to measure spillovers for 

a large number of firms on a fine-grade geographic scale. Patent information allows us to 

both locate knowledge sources and to assess the relevance of this knowledge for each firm. 

We derive our knowledge spillover measure through a three-stage procedure. First, we 

assign each patent (𝑝𝑝𝑝𝑝𝑝𝑝) 𝑝𝑝 to narrowly defined geographical units 𝑙𝑙, using the 5-digit ZIP 

code ('postal area') of the applicant's address. Secondly, we establish the fields of 

technology for which a patent is relevant. For this purpose, we consider that patents are 

not only relevant for the field of technology 𝑚𝑚 a patent is belonging to according to its 

patent class (based on its IPC code) but also for other fields (Jaffe and Trajtenberg, 1999). 

Using patent citation data, we establish a matrix of fields of technology 𝑘𝑘 that cite patents 

from fields of technology 𝑚𝑚 (𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚). This allows us to assign a patent to technologies for 

which it is potentially relevant and identify the strength of these links. Finally, we link 

patents to firms using a concordance between 4-digit industry 𝑗𝑗 and fields of technology 𝑘𝑘 

(𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘). For each firm 𝑖𝑖 and year 𝑡𝑡, we then calculate the knowledge pool 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 in a 

firm's vicinity, using different distance thresholds 𝑟𝑟 (5 to 50 kilometers) and excluding the 

firm's own patents. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is measured as the (lagged) patent flow (newly applied 

patents three years prior to year 𝑡𝑡). For robustness checks, we also calculate a patent stock 

variable.  

The procedure can be summarized as follows:  

      𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙 = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑝𝑝∈𝑙𝑙    for all 𝑙𝑙 ∈ {1, … , 𝐿𝐿} and 𝑘𝑘 ∈ {1, … ,𝐾𝐾} (1) 

      𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡
𝑙𝑙𝑙𝑙 = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝐾𝐾

𝑘𝑘=1 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘   for all 𝑙𝑙 ∈ {1, … , 𝐿𝐿}  and  𝑗𝑗 ∈ {1, … , 𝐽𝐽}  (2) 

     𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑟𝑟 = ∑ ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡
𝑙𝑙𝑙𝑙  𝜆𝜆𝑖𝑖𝑖𝑖 𝜔𝜔𝑙𝑙𝑟𝑟𝑖𝑖𝑗𝑗𝑙𝑙 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  (3) 

with 𝜆𝜆𝑖𝑖𝑖𝑖 being an indicator variable that is 1 if firm 𝑖𝑖 belongs to industry 𝑗𝑗, and 𝜔𝜔𝑙𝑙𝑟𝑟𝑖𝑖 

indicating whether postal area 𝑙𝑙 is within the distance threshold 𝑟𝑟 of firm 𝑖𝑖. 

In the following, we explain in more detail how we implement this procedure. Patent data 

is taken from the Patstat database of the European Patent Office (EPO). We consider all 
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patent applications at the German Patent and Trademark Office (DPMA) as well as 

applications at the EPO and through the Patent Cooperation Treaty (PCT) procedure at 

the World Intellectual Patent Office (WIPO) as long as Germany is among the priority 

countries of these international applications. In case several patent applications represent 

the same invention, they are counted as one patent only (patent family approach). We 

consider both patent applications by firms and by others (e.g. private individuals, 

universities, government research labs) in a year t. Each patent is assigned to a geographical 

unit l by the postal code of the applicant. In case a patent has multiple applicants from 

different postal areas, fractional counting is applied.  

To derive relevance-adjusted patent data, we assign every patent to technology patent 

classes, using the WIPO classification developed by Schmoch (2008). This classification 

links IPC codes to 35 technology fields. Since patents can have more than one IPC code, 

they may be assigned to more than one technology field (using fractional counting). We 

then calculate for each technology field a vector of technology fields that cite this field of 

technology (𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚), using data on backward citations in Patstat. For this exercise we 

consider all patent applications at the DPMA plus EPO and PCT applications with 

Germany as priority country for the period 1990 to 2015.  

In order to link patent data to a firm's innovation activities, other studies often use a 

technology proximity measure (e.g. Jaffe, 1986) which correlates the technology vector of 

patents in the region with the technology vector of the firm derived from the firm's own 

patents. This procedure requires that all firms in the sample have applied for at least one 

patent. This is not the case, however, if one examines a representative sample of firms 

across all industries as we do. In our sample, only 13.4% of the firms have at least one 

patent application. As an alternative approach, we establish a vector of technology fields 

for each industrial sector using 4-digit Nace rev. 2 codes1. For this purpose, we use a 

matching effort performed at ZEW that linked each patent applicant from Germany to a 

comprehensive firm-level panel data base, the Mannheim Enterprise Panel (MUP), 

including more than 3.3 million active German firms as well as information on closed firms 

and hence allows us to link patent application data and firm data back to the 1990s and 

earlier (see Bersch et al., 2004 for details on the MUP). For each firm in the MUP, 

1 Nace (nomenclature statistique des activités économiques dans la communauté européenne) is the official 
statistical classification of economic activities used in the European Union and is derived from the UN 
International Standard Industrial Classification (ISIC). 
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information on its Nace code is available which can be used to calculate a matrix of Nace 

code times fields of technology (𝑐𝑐𝑜𝑜𝑜𝑜𝑘𝑘𝑘𝑘) (see Kortum and Putnam, 1997; Dorner and 

Harhoff, 2018 for similar approaches).  

Using a geographic information system, we finally calculate the count of our patent 

measure within discrete distance thresholds of 5km, 10km, 20km, 30km, and 50km. 

Distances are based on the geographic centers of the postal code area. Thus, we do not 

have to specify a priori the relevant geographic extension of the knowledge spillovers that 

influence innovation persistence. 

Table 1 shows the transition probabilities for the dependent variable 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. We compare 

firms located in locations with a weak local knowledge environment with firms in locations 

with a strong local knowledge environment. The local knowledge environment is proxied 

here as the number of three-year lagged patent applications within a 5km distance 

threshold. Locations with a weak local knowledge environment are those with a low 

patenting activity (lowest quartile of the distribution of 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) while locations with a 

strong local knowledge environment correspond to the highest quartile of patenting 

activity.  

Innovation is permanent to a large extent, but there are clear differences between firms 

located in areas with high patenting activity versus those firms located in areas with a low 

patenting activity. Based on the 5km distance threshold, we observe that in areas with a 

patenting activity in the upper quartile, about 86% of innovators in one year persisted in 

innovation in the subsequent year. In contrast, in areas with a low patenting activity, firms´ 

innovation persistence is also considerably lower. In those areas, 75% of innovative firms 

continued to spend on innovation in the next year. There are also some notable differences 

between manufacturing and services. In general, persistence in innovation is higher in 

manufacturing, but in both sectors firms in areas with a higher patenting activity show a 

higher persistence than firms in low-patenting areas. The difference in persistence is nearly 

8 percentage points in manufacturing and about 17 percentage points in services. However, 

the picture is reversed for non-innovators. Non-innovator status is slightly more persistent 

in areas with low patenting activity – particularly in the service sector.2 This suggests that 

there is indeed a positive link between the local knowledge environment and innovation 

persistence. 

2 Overall, a similar picture is observed if we use a wider distance threshold (i.e. 20km). 
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Table 1. Transition probabilities in areas with high and low patenting activity (based on 5 
km distance band patent counts, in percent)  
  All sample firms Manufacturing  Services 
        
Local 
patenting 
activity 

 NON-
INNO 

INNO NON-
INNO 

INNO NON-
INNO 

INNO 

 
 

Lowest 
quartile 

NON-INNO 89.2 10.8 87.2 12.8 90.5  9.5 

 INNO 24.7 75.3 17.1 82.9 39.0 61.0 
        
        
Highest 
quartile 

NON-INNO 85.9 14.1 85.6 14.4 86.2 13.8 

 INNO 13.6 86.4 9.5 90.5 21.8 78.2 
        

 

Looking at the length of innovation spells, survival analysis also points to a role of the local 

knowledge environment for innovation persistence as we again observe marked differences 

between firms in areas surrounded by a high versus a low patenting activity. Figure 1 shows 

the innovation survival rates for firms located in the upper quartile versus the rest of the 

firms for the distance threshold of 5km.3 Firms in areas with a high patenting activity again 

demonstrate higher survival rates in innovation. The difference between the survivor 

functions is significant at the 1% level (p-value 0.0015) as indicated by the log-rank test. 

The observed higher innovation persistence in areas with a strong local knowledge 

environment may be driven by differences in the spatial distribution of firms with different 

characteristics. For example, larger firms tend to have higher innovation persistence, and if 

larger firms tend to locate in areas with a stronger knowledge environment, one would 

observe higher persistence without necessarily implying that there are local knowledge 

spillovers in place that facilitate innovation persistence. In addition to observable firm 

characteristics, there could also be a range of unobserved firm characteristics driving the 

observed pattern. Observed and unobserved firm characteristics have to be accounted for 

in an econometric approach in order to identify causal effects.  

  

3Again, overall a very similar pattern is observed if we use a wider distance threshold (i.e. 20km) or if we 
compare the top quartile to the bottom quartile. 
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Figure 1. Survival rates of innovation (%) in firms being in top patenting quartile locations 
compared to firms in the rest of locations 

Notes: The graph shows Kaplan-Meier survival estimates of innovation behavior in firms 

differentiated by the size of the local knowledge pool. Top quartile defines locations above 

the 75th percentile of patent activity within a distance of 5km.  

4. Econometric Model and Estimation Approach  

Our empirical model is based on a simple model of optimization for a firm facing the 

decision to invest in innovation. A profit maximizing firm makes its decision based on 

expected profits (benefits minus costs) from innovation, now and in the future. It engages 

in innovation if the expected present value of profits from investment in innovation 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∗  is positive. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∗  depends on past realized innovation 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1 for the four 

reasons outlined above: On the one hand firms with past innovation have already incurred 

start-up (sunk) costs, for instance for setting up an R&D lab, which reduces future costs of 

innovation or on the hand past innovation increases the expected benefits of future 

innovation due to success breeds success, learning effects or innovation-supportive market 

structures. These arguments can imply that the probability of engaging in innovation in the 

current period will depend on the decision to innovate in past periods. It is therefore 

0.
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important to account for dynamic effects in the econometric model. In addition, expected 

profits from innovation also depend on a number of observed firm-specific attributes 𝑥𝑥𝑖𝑖𝑖𝑖 

as well as a number of time invariant firm-specific characteristics 𝜑𝜑𝑖𝑖 that cannot be directly 

observed (for instance, characteristics of the products or managerial ability). Lack of 

control for these unobserved characteristics is known to lead to a “spurious” state 

dependence in dynamic models (see Heckman, 1991), and as a result to biased estimates of 

any explanatory variable potentially correlated with it. In summary, the expected profits due 

to innovation can be written as: 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∗  = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1+𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (4) 

𝜀𝜀𝑖𝑖𝑖𝑖 captures time variant idiosyncratic error shocks. It is assumed that the conditional 

distribution of 𝜀𝜀𝑖𝑖𝑖𝑖 is i.i.d. 𝑁𝑁(0,1). Unfortunately, we don’t observe the expected present 

value of profits from investing in innovation, but instead observe whether or not the firm 

is engaged in innovation activities or not. We assume that the firm engages in innovation if 

the expected net present value of profits is positive. Consequently, the innovation status of 

the firm 𝑖𝑖 in period 𝑡𝑡 can be denoted by the binary indicator 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = �1   𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∗ > 0
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      

      (5) 

Due to the assumption that 𝜀𝜀𝑖𝑖𝑖𝑖 follows a normal distribution, the probability of investing in 

innovation can be written as: 

 𝑃𝑃𝑃𝑃(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = 1|𝑥𝑥𝑖𝑖𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1,𝜑𝜑𝑖𝑖) = 𝐹𝐹(𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1+𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑖𝑖)     (6) 

where 𝐹𝐹(∙) is the normal cumulative distribution function.  

We express the unobserved heterogeneity 𝜑𝜑𝑖𝑖 as a function of time averages of all the 

explanatory variables 𝑥̅𝑥𝑖𝑖 (except the lagged endogenous variable) (Chamberlain, 1980). 

Another important issue refers to the so called “initial conditions problem” as the initial 

period of observation in the sample does not correspond with the first period the firm is in 

the market. The beginning of the process is unobserved but presumably the unobserved 

effects depend on the initial observation. Following Wooldridge (2005), we thus model the 

unobserved heterogeneity conditional on the initial condition, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖0 , and the time averages 

of the exogenous variables. 

 𝜑𝜑𝑖𝑖 = 𝜕𝜕0 + 𝜕𝜕1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖0 + 𝜕𝜕1𝑥̅𝑥𝑖𝑖 + 𝜗𝜗𝑖𝑖  (7) 
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where 𝜗𝜗𝑖𝑖 is also normally distributed and independent from 𝑥̅𝑥𝑖𝑖 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖0. This reduced 

form can be plugged into equation (6). The model, also called correlated random effects 

probit model, then has the same structure as the standard random effects probit, except the 

explanatory variables are given by 𝑥𝑥𝑖𝑖𝑖𝑖, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖0 and 𝑥̅𝑥𝑖𝑖 . 

The key questions of our paper is how the local knowledge environment moderates firms’ 

innovation persistence. For this purpose, we include the knowledge pool that is relevant for 

firm 𝑖𝑖 at time 𝑡𝑡 located in region 𝑙𝑙, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙 , and its interaction term with the lagged 

innovation status 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1.4 In the empirical analysis we measure 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙  by the 

technology-relevance weighted three-year lagged flow of patent applications in different 

distance bands (5, 10, 20, 30, 50 km) as described in the previous section. The augmented 

latent model is then given by 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∗ = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖+𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1 + 𝑎𝑎1𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙 + 𝛼𝛼2�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙  � + 𝜕𝜕0 +

𝜕𝜕1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖0 + 𝜕𝜕1𝑥̅𝑥𝑖𝑖 + 𝜗𝜗𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (8) 

The main virtue of this approach is that it accounts for the correlation between 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖−1, 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙  and 𝜑𝜑𝑖𝑖. This is particularly important in the present case since the initial (and 

usually time-invariant) firm location is potentially correlated with innovation status. Firms 

with unobserved characteristics that are positively linked to innovate may be attracted to 

regions that offer better conditions for innovating. 

Firm level control variables: In line with previous theoretical and empirical studies on 

innovation (e.g. Schumpeter, 1942; Cohen and Klepper, 1996), we control for firm size 

(measured as the log of the number of employees). Firm size has been found to be an 

important determinant of whether or not a firms is engaged in innovation activities in many 

studies on innovation persistence (e.g. Peters, 2009; Raymond et al., 2010; Clausen et al., 

2012; Ganter and Hecker, 2013), as a minimum of resources is required to fund innovation 

activities.  

Furthermore, we control for firm age (log of years since the firm was created), export status 

(1 if firm sells on international markets), and group status (1 if firm belongs to an 

enterprise group). As reviewed by Le Bas and Scellato (2014) several previous studies have 

also included these controls. Firm age is a proxy for knowledge accumulation. Firms that 

operate in international markets are likely to have greater organizational capabilities, larger 

4 Ganter and Hecker (2013) use a similar approach to analyze the moderating impact of some firm-level 
characteristics and include interaction effects between those characteristics and the lagged innovation status.  
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competitive pressure but also larger benefits from innovation due to larger market size and 

technology sourcing that make them more likely to innovate (Peters et al. 2018). Firms 

belonging to a group are more likely to innovate as they may benefit also from within-

group knowledge spillovers (Raymond et al., 2010) as well as resources that help to sustain 

innovation efforts. In our estimations, all these firm-specific control variables are lagged 

one year to alleviate potential endogeneity issues.  

Sectoral and regional controls: Previous research has furthermore shown that persistence varies 

among different industries. Firms in high-tech industries tend to show higher persistence 

than firms in low-tech industries (Raymond et al., 2010). Our specification therefore 

includes 2-digit Nace sector dummies. Finally, we include NUTS5 level 2 regional dummies 

to control for unobserved fixed region-specific factors that could influence persistence in 

innovation.  

5. Results  

Table 2 shows how the local knowledge environment affects the persistence of innovation. 

Displayed are marginal effects and standard errors of the correlated random effects probit 

model (8) for firms in manufacturing. As in previous research (Peters, 2009), we 

corroborate evidence for true state dependence in firms’ innovation activities. An 

innovator in 𝑡𝑡 − 1 has a significantly higher probability of innovating in year 𝑡𝑡 than a non-

innovator even after controlling for observed and unobserved characteristics and the 

potential self-selection of firms into areas of higher patenting activity. Across different 

specifications, we estimate this difference to be between 47 to 52 percentage points which 

is even slightly higher than comparable estimates for the period 1994-2002 (Peters, 2009). 

Given that the unconditional difference is around 70 to 76 percentage points (see Table 1), 

we can conclude that about 2/3 of the persistence in innovation is due to true state 

dependence, while the rest is explained by observed and unobserved characteristics. ρ  

indicates the importance of individual heterogeneity. About 27% of the unexplained 

variation of innovation can be attributed to individual heterogeneity. Also in line with 

previous studies, we find a highly significant initial condition indicating a substantial 

correlation between firms’ initial innovation status and the unobserved heterogeneity.  

 

5 Nomenclature des unités territoriales statistiques, the EU's regional classification system for statistical 
purposes. 
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Table 2. Manufacturing: Marginal effects of correlated random effects probit estimations  

 
(1) 

Up to 5 km  

(2) 

Up to 10km  

(3) 

Up to 20km 

(4) 

Up to 30km  

(5) 

Up to 50km 
Innot-1 

 

0.525*** 
(0.020) 

0.509*** 
(0.018) 

0.494*** 
(0.016) 

0.485*** 
(0.015) 

0.477*** 
(0.014) 

KnowlPool 

 

-0.002 
(0.003) 

-0.000 
(0.003) 

0.000 
(0.003) 

0.003 
(0.003) 

0.003 
(0.003) 

Innot-1*KnowlPool 
 

 0.011*** 
(0.003) 

 0.011*** 
(0.003) 

 0.009** 
(0.003) 

 0.008** 
(0.004) 

0.007 
(0.004) 

Size 
 

 0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

Age -0.011* 
(0.006) 

-0.011* 
(0.006) 

-0.012* 
(0.006) 

-0.012* 
(0.006) 

-0.012* 
(0.006) 

Group -0.026 
(0.024) 

-0.025 
(0.024) 

-0.026 
(0.024) 

-0.026 
(0.024) 

-0.026 
(0.024) 

Export 0.073*** 
(0.023) 

0.073*** 
(0.023) 

0.074*** 
(0.023) 

0.074*** 
(0.023) 

0.074*** 
(0.023) 

Inno_0 
 

0.290*** 
(0.014) 

0.292*** 
(0.014) 

0.292*** 
(0.014) 

0.292*** 
(0.014) 

0.293*** 
(0.014) 

 Mean(Size) 0.044* 
(0.023) 

0.044* 
(0.023) 

0.044* 
(0.023) 

0.044* 
(0.023) 

0.044* 
(0.023) 

Mean(Group) 0.035 
(0.028) 

0.035 
(0.028) 

0.036 
(0.028) 

0.036 
(0.028) 

0.035 
(0.028) 

Mean(Export) 0.080*** 
(0.026) 

0.079*** 
(0.026) 

0.079*** 
(0.026) 

0.079*** 
(0.026) 

0.079*** 
(0.026) 

Region fixed effects (NUTS2) Y Y Y Y Y 
Sector fixed effects (Nace2) Y Y Y Y Y 
Year fixed effects Y Y Y Y Y 

υσ   0.614 
(0.029) 

0.616 
(0.029) 

0.616 
(0.029) 

0.615 
(0.029) 

0.616 
(0.029) 

ρ   0.274 
(0.019) 

0.275 
(0.019) 

0.275 
(0.019) 

0.274 
(0.019) 

0.275 
(0.019) 

Observations 25567 25567 25567 25567 25567 
Groups 8447 8447 8447 8447 8447 
Log likelihood -8405.8 -8406.9 -8409.9 -8409.3 -8411.3 

Notes: Knowledge pool is based on the number of firm-specific technology-relevant patent applications in 
year t - 3 (patent flow) within the different distance thresholds. Standard errors in parentheses.  ***, **, * 
indicate statistical significance at the 99, 95 and 90% levels. 

 

Our key variables of interest is the interaction term of the local knowledge pool with the 

lagged innovation status, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡−1 × 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙  . With the inclusion of this interaction 

term to measure how the local knowledge environment moderates innovation persistence, 

the knowledge pool itself does not turn out to be significant. However, the interaction term 

matters with its size and significance falling in distance. In column (1), the distance 

threshold is up to 5 kilometers from the postal code centroid of the focal firm. The 

interaction term is positive and highly statistically significant at the 1% level. The estimated 

17 

 



coefficient is 0.011. This positive interaction with the lagged innovation status confirms 

that persistence is indeed higher for firms in areas with more patenting activity. This 

provides evidence that the local patenting environment is moderating firms’ true state 

dependence and that local knowledge spillovers contribute to firms’ innovation persistence. 

This is consistent with the findings in Tavassoli and Karlsson (2018) who observe higher 

persistence for product and process innovations in regions with a greater number of 

innovative firms. Our results also provide empirical support to the argument put forward 

in Castellani (2017) that a strong local flow of knowledge can lead to persistence in 

innovation activities. 

In column (2) we widen the distance band up to 10 kilometers. The interaction term 

continues to be positive and significant, and of the same magnitude. In column (3) we 

extend the distance threshold up to 20 kilometers. Now the interaction term is slightly 

smaller with a marginal effect of 0.009 and significance drops to the 5 percent level. Within 

a 30km radius, the marginal effect reduces to 0.008 and significance at the 5 percent level. 

Beyond the 30km threshold we observe that the interaction term further falls in magnitude 

and loses significance. This suggests that the spillovers that contribute to innovation 

persistence in manufacturing tend to fall by distance and are spatially constrained within 30 

kilometers. 6 

Table 3 shows the corresponding results for the service sector. Innovation in services is 

highly state dependent and of similar magnitude than in manufacturing. For services, the 

local knowledge pool 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 𝑙𝑙  is significant up to 30 kilometers indicating a positive 

influence of the local patenting activity on the probability of engaging in innovation 

activities. In contrast, the interaction term is only significant up to the 10km distance 

threshold, indicating that in services too, the local knowledge environment moderates 

innovation persistence but the effect is spatially more constrained. Beyond 10 kilometers, 

we do not observe a significant impact of the local patenting environment on innovation 

persistence. Compared to manufacturing, these results highlight that local knowledge 

spillovers are even more localized in services.  

  

6 In unreported estimations we have also tested for further distance bands beyond 50 kilometres but found 
no significant effects.  
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Table 3. Services: Marginal effects of correlated random effects probit estimations  

 
(1) 

Up to 5 km  

(2) 

Up to 10km  

(3) 

Up to 20km 

(4) 

Up to 30km  

(5) 

Up to 50km 
Innot-1 
 

0.518*** 
(0.020) 

0.512*** 
(0.018) 

0.489*** 
(0.016) 

0.484*** 
(0.015) 

0.486*** 
(0.014) 

KnowlPool 
 

0.006*** 
(0.002) 

0.006*** 
(0.003) 

0.007*** 
(0.003) 

0.009*** 
(0.003) 

0.005 
(0.003) 

Innot-1*KnowlPool 
 

 0.007** 
(0.003) 

 0.007** 
(0.003) 

 0.002 
(0.003) 

 0.001 
(0.004) 

 0.003 
(0.004) 

Size 0.019 
(0.020) 

0.019 
(0.020) 

0.020 
(0.020) 

0.020 
(0.020) 

0.021 
(0.020) 

Age -0.031*** 
(0.007) 

-0.031*** 
(0.007) 

-0.032*** 
(0.007) 

-0.032*** 
(0.007) 

-0.032*** 
(0.007) 

Group -0.004 
(0.025) 

-0.004 
(0.025) 

-0.003 
(0.025) 

-0.003 
(0.025) 

-0.003 
(0.025) 

Export  0.012 
(0.024) 

 0.012 
(0.024) 

 0.012 
(0.024) 

 0.011 
(0.024) 

 0.012 
(0.024) 

Inno0 
 

0.241*** 
(0.015) 

0.240*** 
(0.015) 

0.243*** 
(0.015) 

0.243*** 
(0.015) 

0.244*** 
(0.015) 

Mean(Size) 0.026 
(0.020) 

0.026 
(0.020) 

0.025 
(0.020) 

0.024 
(0.020) 

0.024 
(0.020) 

Mean(Group) 0.052* 
(0.030) 

0.052* 
(0.030) 

0.053* 
(0.030) 

0.053* 
(0.030) 

0.055* 
(0.030) 

Mean(Export) 0.126*** 
(0.029) 

0.128*** 
(0.028) 

0.131*** 
(0.028) 

0.132*** 
(0.028) 

0.134*** 
(0.028) 

Region fixed effects (NUTS2) Y Y Y Y Y 
Sector fixed effects (Nace2) Y Y Y Y Y 
Year fixed effects Y Y Y Y Y 

υσ   0.525 
(0.029) 

0.521 
(0.029) 

0.522 
(0.029) 

0.524 
(0.029) 

0.527 
(0.029) 

ρ   0.216 
(0.019) 

0.213 
(0.019) 

0.214 
(0.019) 

0.215 
(0.019) 

0.217 
(0.019) 

Observations 20331 20331 220331 20331 20331 
Groups 7289 7289 7289 7289 7289 

 Log likelihood -8092.4 -8093.1 -8100.9 -8099.3 -8104.2 
Notes: Knowledge pool is based on the number of firm-specific technology-relevant patent applications in 
year t - 3 (patent flow) within the different distance thresholds. Standard errors in parentheses.  ***, **, * 
indicate statistical significance at the 99, 95 and 90% levels. 

 

Overall, our novel findings on how local knowledge pools shape innovation persistence 

depending on distance expand previous studies on the geography of innovation that have 

stressed the role of knowledge spillovers and that they are strongly bounded in space. 

Robustness checks: Since our data cover all patent applications for several decades, we are able 

to construct a patent stock measure for each geographical unit. In this case we sum up the 

patent application filed over the last 20 years. Table A.4 and Table A.5 in the Appendix 

depicts the estimation results of the correlated random effects probit model for 
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manufacturing and services respectively, using the patent stock instead of patent flows as 

measure for 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. A fairly similar picture emerges with some smaller differences for 

services. Using patent stock data instead of patent flows results in a spatially somewhat less 

constrained effect of local knowledge spillovers on innovation persistence of service firms.  

In another robustness check we further demonstrate that our results are not driven by very 

large firms. Excluding very large corporations (more than 10,000 employees), results are 

again qualitatively the same. 

6. Conclusions  

This paper analyzed the role of a firm's local knowledge environment for the persistence of 

innovation activities. We employ a panel data set spanning 15 years for a representative 

sample of manufacturing and service firms in Germany. The local knowledge pool is 

measured by firm-specific technology-relevant patents in a firm's vicinity, using different 

distance thresholds.  

Local knowledge not only influences the probability that a firm engages in innovation 

(which is particularly true for services), but our results most intriguingly show that the local 

knowledge environment also significantly moderates innovation persistence. This is a 

different mechanism through which local knowledge influences innovation activity. 

Our results show higher innovation persistency for firms with a rich knowledge base 

(relevant to the firm's activities) in their direct neighborhood. This adds an explanation of 

why centers of innovation tend to maintain their innovation advantage and remain 

innovation hot spots over time (for recent evidence see Castellani, 2017 for OECD 

regions; Rammer and Schubert, 2018 for Germany; and Kerr and Robert-Nicoud, 2019 for 

the U.S.). 

The moderating effect is highest for very short distances (up to 10km) and then diminishes 

very quickly. There has been an ongoing debate in the literature on the geographic scope of 

knowledge flows (Breschi, 2011). Our findings are consistent with highly localized 

knowledge flows. Despite the increasing globalization of innovation, our results point to a 

significant and spatially very constrained role of the local knowledge context for innovation 

persistence. The effect of knowledge spillovers on innovation persistence is spatially more 

constrained in services than in manufacturing. Our research contributes to a better 

understanding on the drivers and mechanism of innovation persistence. This is important, 

because innovation persistence contributes to the long-term competitiveness of firms (see 
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Lööf and Johannson, 2013 for productivity growth; Bianchini and Pellegrino, 2017 for 

employment growth).7  

This paper also helps to advance our understanding of spatial and regional heterogeneity in 

innovation performance. Innovations are not only important from the point of view of the 

individual firm, but also for the competitiveness of regional and national economies. 

Innovation persistence is thus a pertinent issue for public policy (Hecker and Ganter, 

2014). On the one hand, our results suggest that regional innovation leadership can become 

self-sustaining. The fact that innovation persistency is enhanced by a thick knowledge 

environment suggests furthermore that policies that manage to raise the local innovation 

performance can have long lasting effects. On the other hand, our results also put 

emphasis on local preconditions and that they can constrain any policy efforts. Lagging 

areas that lack a sufficient knowledge base for successful policy implementations may fall 

even further behind. Recent empirical evidence (Castellani, 2017; Rammer and Schubert, 

2018; Kerr and Robert-Nicoud, 2019) shows that over the last decades regions with already 

higher patenting activity have indeed increased their rate of innovation and left behind 

other regions. Our research has identified a firm-level mechanism that can explain such a 

widening of spatial disparities in innovation performance.  

  

7 Though in a recent paper Guarascio and Tamagni (2019) could not find that persistent innovators in 
Spanish manufacturing experience a sales growth premium. 
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Appendix 

Table A.1: Distribution of firms by industry (in percent) 

 
  

Sector Original sample Estimation sample 
Food 4.65 4.51 
Textile 3.03 3.18 
Wood, paper, printing 6.07 6.16 
Chemicals 4.28 4.34 
Rubber, plastics 3.21 3.37 
Glass, ceramics 2.34 2.42 
Metals 7.63 8.35 
Machinery 6.96 7.29 
Electronics 5.29 5.78 
Instruments 4.65 5.00 
Vehicles 3.28 3.30 
Misc. manufacturing 2.85 2.01 
Wholesale 4.15 4.06 
Retail 1.69 1.71 
Transport, post 7.81 7.24 
Banks, insurance 4.69 4.06 
Computer, telecom. 5.17 4.90 
Technical services 6.22 6.51 
Business rel. services 5.10 4.71 
Other services 8.08 8.31 
Renting 1.28 1.39 
Media 1.57 1.40 
Total no of observations 
 

90,390 
 

45,898 
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Table A.2: Distribution of firms by firm size (in percent) 

No. of employees  Original sample Estimation sample 
0-49 54.78 55.32 
50-99 11.63 12.25 
100-249 11.49 12.17 
250-999 10.51 10.22 
1000 - 9999 10.03 8.59 
10000 and more 1.58 1.45 

Total no of observations 89,485 45,898 
Note: In the original sample, 905 out of 90,390 observations have missing information on employment.  

 

Table A.3: Innovation behavior  

Innovation indicator Original sample Estimation sample 
% with positive innovation expenditure 53.33 52.71 
% with product innovation 44.82 41.95 
% with process innovation 36.94 35.21 
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Table A.4. Manufacturing: Marginal effects of correlated random effects probit 
estimations: Knowledge pool based on the firm-specific technology-relevant patent stock 
in year 3t −  within different distance thresholds  

 
(1) 

Up to 5 km  

(2) 

Up to 10km  

(3) 

Up to 20km 

(4) 

Up to 30km  

(5) 

Up to 50km 
Innot-1 
 

0.487*** 
(0.014) 

0.478*** 
(0.013) 

0.466*** 
(0.013) 

0.461*** 
(0.013) 

0.462*** 
(0.015) 

KnowlPool 
 

-0.002 
(0.002) 

-0.002 
(0.002) 

0.002 
(0.003) 

0.001 
(0.003) 

0.001 
(0.003) 

Innot-1*KnowlPool 
 

 0.007*** 
(0.002) 

 0.009*** 
(0.003) 

 0.007** 
(0.003) 

 0.006* 
(0.004) 

0.003 
(0.004) 

Size  0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

0.024 
(0.023) 

Age -0.011* 
(0.006) 

-0.011* 
(0.006) 

-0.011* 
(0.006) 

-0.011* 
(0.006) 

-0.012* 
(0.006) 

Group -0.026 
(0.024) 

-0.026 
(0.024) 

-0.027 
(0.024) 

-0.026 
(0.024) 

-0.026 
(0.024) 

Export 0.073*** 
(0.023) 

0.074*** 
(0.023) 

0.074*** 
(0.023) 

0.074*** 
(0.023) 

0.074*** 
(0.023) 

Inno0 
 

0.292*** 
(0.014) 

0.292*** 
(0.014) 

0.292*** 
(0.014) 

0.292*** 
(0.014) 

0.294*** 
(0.014) 

Mean(Size) 0.044* 
(0.023) 

0.045* 
(0.023) 

0.044* 
(0.023) 

0.045* 
(0.023) 

0.045* 
(0.023) 

Mean(Group) 0.035 
(0.028) 

0.036 
(0.028) 

0.036 
(0.028) 

0.035 
(0.028) 

0.035 
(0.028) 

Mean(Export) 0.080*** 
(0.026) 

0.078*** 
(0.026) 

0.079*** 
(0.026) 

0.079*** 
(0.026) 

0.080*** 
(0.026) 

Region fixed effects (NUTS2) Y Y Y Y Y 
Sector fixed effects (Nace2) Y Y Y Y Y 
Year fixed effects Y Y Y Y Y 

υσ   0.615  
(0.029) 

0.615  
(0.029) 

0.614  
(0.029) 

0.614  
(0.029) 

0.617  
(0.029) 

ρ   0.275 
(0.019) 

0.275 
(0.019) 

0.274 
(0.019) 

0.274 
(0.019) 

0.276 
(0.019) 

Observations 25,567 25,567 25,567 25,567 25,567 
Groups 8,447 8,447 8,447 8,447 8,447 

Log likelihood -8409.2 -8409.9 -8410.7 -8413.0 -8415.8 
Standard errors in parentheses. ***, **, * indicate statistical significance at the 99, 95 and 90% levels. 
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Table A.5. Services: Marginal effects of correlated random effects probit estimations: 
Knowledge pool based on the firm-specific technology-relevant patent stock in year 3t −  
within different distance thresholds  

 
(1) 

Up to 5 km  

(2) 

Up to 10km  

(3) 

Up to 20km 

(4) 

Up to 30km  

(5) 

Up to 
 Innot-1 

 
0.498*** 
(0.014) 

0.489*** 
(0.013) 

0.479*** 
(0.012) 

0.476*** 
(0.013) 

0.477*** 
(0.015) 

KnowlPool 
 

 0.004* 
(0.002) 

 0.004* 
(0.002) 

0.001 
(0.003) 

0.001 
(0.003) 

0.002 
(0.003) 

Innot-1*KnowlPool 
 

 0.007*** 
(0.002) 

 0.006** 
(0.003) 

 0.006* 
(0.003) 

 0.004 
(0.004) 

0.002 
(0.004) 

Size  0.019 
(0.020) 

0.019 
(0.020) 

0.020 
(0.020) 

0.020 
(0.020) 

0.020 
(0.020) 

Age -0.031*** 
(0.007) 

-0.032*** 
(0.007) 

-0.032*** 
(0.007) 

-0.032*** 
(0.007) 

-0.032*** 
(0.007) 

Group -0.004 
(0.025) 

-0.005 
(0.025) 

-0.005 
(0.025) 

-0.004 
(0.025) 

-0.004 
(0.025) 

Export 0.012 
(0.024) 

0.013 
(0.024) 

0.012 
(0.024) 

0.012 
(0.024) 

0.012 
(0.024) 

Inno0 
 

0.241*** 
(0.015) 

0.241*** 
(0.015) 

0.243*** 
(0.015) 

0.244*** 
(0.015) 

0.244*** 
(0.015) 

Mean(Size) 0.026 
(0.020) 

0.025 
(0.020) 

0.024 
(0.020) 

0.024 
(0.020) 

0.024 
(0.020) 

Mean(Group) 0.053* 
(0.030) 

0.054* 
(0.030) 

0.057* 
(0.030) 

0.057* 
(0.030) 

0.057* 
(0.030) 

Mean(Export) 0.128*** 
(0.029) 

0.128*** 
(0.029) 

0.132*** 
(0.028) 

0.134*** 
(0.028) 

0.134*** 
(0.028) 

Region fixed effects (NUTS2) Y Y Y Y Y 
Sector fixed effects (Nace2) Y Y Y Y Y 
Year fixed effects Y Y Y Y Y 

υσ   0.525  
(0.029) 

0.521  
(0.029) 

0.522  
(0.029) 

0.524  
(0.029) 

0.527  
(0.029) 

ρ   0.216 
(0.019) 

0.213 
(0.019) 

0.214 
(0.019) 

0.215 
(0.019) 

0.217 
(0.019) 

Observations 20,331 20,331 20,331 20,331 20,331 
Groups 7,289 7,289 7,289 7,289 7,289 
Log likelihood -8094.4 -8097.4 -8104.1 -8106.2 -8106.4 

Standard errors in parentheses. ***, **, * indicate statistical significance at the 99, 95 and 90% levels. 

29 

 



ZEW – Leibniz-Zentrum für Europäische  
Wirtschaftsforschung GmbH Mannheim
ZEW – Leibniz Centre for European  
Economic Research

L 7,1 · 68161 Mannheim · Germany 
Phone 	+49 621 1235-01  
info@zew.de · zew.de

Discussion Papers are intended to make results of ZEW 
research promptly available to other economists in order 
to encourage discussion and suggestions for revisions. 
The authors are solely responsible for the contents which 
do not necessarily represent the opinion of the ZEW. 

IMPRINT

//

Download ZEW Discussion Papers from our ftp server:

http://ftp.zew.de/pub/zew-docs/dp/

or see:

https://www.ssrn.com/link/ZEW-Ctr-Euro-Econ-Research.html 
https://ideas.repec.org/s/zbw/zewdip.html




